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Abstract—This article reviews recent investigations on the phenomenon of Bose-Einstein condensation of
dilute gases. Since the experimental observation of quantum degeneracy in atomic gases, the research activity
inthefield of coherent matter-waves literally exploded. The present topical review aimsto give an introduction
into the thermodynamics of Bose—Einstein condensation, ageneral overview over experimental techniques and
investigations, and a theoretical foundation for the description of bosonic many-body quantum systems.
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CHAPTER 1. If the gas consists of a single species of bosonic parti-

INTRODUCTION

In classical physics, light is awave and matter con-
sists of particles. At the beginning of the twentieth cen-
tury, new experiments like the discovery of the photo
effect shattered the common view of life. Those obser-
vations could only be explained by the assumption that
light consists of quantized energy packets, similar to
particles. The feature that light sometimes appears as a
wave and sometimes as a particle seemed incompatible.
This duality of light was understood within the frame-
work of the newly developed quantum theory which
benefited from important contributions from scientists
including Max Planck, Niels Bohr, Werner Heisenberg,
and Albert Einstein. Together with Einstein’s theory of
relativity the quantum theory today constitutes the fun-
damental pillar of modern physics. Louis de Broglie
applied the duality principle also to material particles.
According to him, very cold particles should under cer-
tain conditions behave like waves whose wavelengths
increase as their velocity drops. The particleis delocal-
ized over a distance corresponding to the de Broglie
wavelength. These features were soon discovered
experimentally and are today even used commercialy,
e.g., in eectron microscopes.

The laser was discovered in 1956. In a laser, light
particles are forced to oscillate synchronoudly, i.e.,
coherently. By analogy, we may now raise the question
if a similar phenomenon can occur for material parti-
cles, and if it should in principle be possible to con-
struct an atomlaser. Such adevice would emit coherent
matter-waves just like the laser emits coherent light.
When a gasis cooled down to very low temperatures,
the individual atomic de Broglie waves become very
long and, if the gasis dense enough, eventually overlap.

clesal being in the same quantum state, the de Broglie
waves of the individual particles constructively inter-
fere and build up a huge coherent matter-wave. The
matter-wave is described by a single quantum mechan-
ical wavefunction exhibiting long range order and hav-
ing a single phase. If this wavefunction is formed in a
trap, all the atoms pile up in its ground state. The tran-
sition from agas of individual atoms to the mesoscopic
guantum degenerate many-body state occurs as a phase
transition and is named after Bose and Einstein who
calculated the effect as early as 1924 [1, 2] Bose—Ein-
stein condensation (BEC).

The vast interest in Bose-Einstein condensation
arises partly from the fact that this phenomenon
touches several physical disciplinesthus creating alink
between them: In thermodynamics BEC occurs as a
phase transition from gasto anew state of matter, quan-
tummechanics view BEC as a matter-wave coherence
arising from overlapping de Broglie waves of the atoms
and draw an analogy between conventional and “atom
lasers” quantumstatistics explain BEC as more than
one atom sharing a phase space cell, in the quantum
theory of atomic traps many atoms condense to the
ground state of the trap, in quantum field theory BEC is
commonly related to spontaneous symmetry breaking.

The experimental verification of Bose-Einstein
condensation has been along cherished dream in phys-
ics. On one hand, several phenomena have been related
to BEC in the past, e.g., the phenomenon of superfluid-
ity in liquid helium and the superconductivity. On the
other hand, those strongly interacting systems are not
pure enough to clearly identify the role of the Bose con-
densation. A few years ago, however, Bose-Einstein
condensation in weakly interacting confined atomic
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gases was achieved in experiments [3-6]. The observa-
tion of Bose—Einstein condensation has now been con-
firmed by more than twenty groupsworldwide and trig-
gered an enormous amount of theoretical and experi-
mental work on the characterization of Bose-
condensed gases. While the early work focused on the
equilibrium thermodynamics of condensates close to
the phase transition, very soon the dynamical response
of the condensate wavefunction to perturbations was
subject of thorough investigations. Subsequently, the
general attention turned to the study of the superfluid
characteristics of BECs, phenomena of quantum trans-
port and the interaction of BECswith light. Meanwhile,
exotic states like multiple species condensates [7, 8]
and vortices [9, 10] have been created, Feshbach colli-
sion resonances have been found [11-13], various
kinds of atom lasers have been constructed [14-18],
BEC interferometers have been realized [19], experi-
ments on diffraction of BECs have been carried out
[20], nonlinear matter-wave interactions [21] and mat-
ter-wave amplification [ 22—-24] have been observed.

One of the most exciting features is the possibility
to construct atom lasers. The technical advances made
in the past few years in controlling and manipulating
matter-waves have raised a new field caled atom
optics. Nearly all optical elements which are used to
manipulate light beams have found their atom-optical
counterpart within the past ten years, including mirrors,
lenses, waveguides, acousto-optical modulators, and so
on. The occurrence of large-scale coherent quantum
objects like BECs and atom lasers will definitively lead
to a modernization of the fields of atomic interferome-
try, holography, lithography and microscopy. Colli-
sions between atoms add a rich variety of phenomena
to the field of coherent matter-wave optics where they
play arole similar to the role played by atom—photon
interactions in quantum and nonlinear optics. Since the
experimental observation of matter-wave four-wave
mixing [21] the field of nonlinear matter-wave optics
[25] isevolving at very high speed.

The characteristics (shape, stability, quantum deple-
tion, ...) and the dynamics (superfluidity, nonlinear
excitations, ...) of BECs are largely governed by inter-
actions between the atoms. The importance of atomic
collisions for BEC turns them into interesting subject
for studies. Low-energy scattering phenomena, like the
recently found Feshbach collision resonances [11, 12]
may be used to coherently couple a bound state of two
atoms to the unbound continuum [26]. This is particu-
larly interesting for the development of techniques
capable of producing ultracold moleculesright inside a
trap (ultracold chemical engineering), or even to pro-
duce molecular BECs.

Finally, the field of atomic quantum optics is being
launched with many interesting theoretical predictions
and ideas. Atomic quantum optics could be defined as
the matter-wave counterpart of quantum optics with
light fields. In analogy, one might expect the possibility
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of building up “nonclassical” quantum correlations,
e.g., Schrodinger cat like quantum states in a truly
mesoscopic quantum system (expanded BEC wave-
functions may easily range up to millimeter sizes) [27].
Those states have been studied in various quantum
optical systems. But even more important is the possi-
bility of coherently coupling the optical, motional, and
internal degrees of freedom and therefore the entangle-
ment of the related modes. In such systems, quantum
optics of laser modes (Cavity QED) and matter-wave
opticswill merge. There are aready several ideas about
the implementation of mutual coherent quantum con-
trol between optical and matter-wave modes [28], and
an ultracold version of the Correlated Atomic Recoil
Laser (CARL), an atomic analogue of the Free-Elec-
tron Laser (FEL), may play the role of an interface
between optical and matter-wave fields [29].

This topical review is organized as follows. The
introduction into the basic notions of the thermody-
namics of Bose-Einstein condensation (Chapter 2) is
brief, since many excellent papers and textbooks have
been published on this subject. Chapter 3 reviews
experimental approaches to BEC and points out the
essential techniques to achieve and probe condensates.
These have been covered by severa review articles as
well, so that we just give a short overview. Ever since
the first achievement of BEC in a dilute gas, the
experimental progress has been very fast. Almost every
month a new milestone-experiment is published and
any attempt of writing areview is hence outdated at the
time of publication. Nevertheless, we believe that a
review of the recent experiments is helpful to show the
state of the art in BEC manipulation and to point out the
challenges which still lie ahead. We devoted Chapters 4,
5 and 6 to this subject.

There are two good reviews discussing the physics
of trapped Bose-Einstein condensates [30, 31]. The
theoretical part of our review differs from the latter in
several aspects. First of al, we thoroughly investigate
those principal notions, whose discussion is rarely met
in literature but which are crucial to answer such basic
guestionsas: What is Bose—Einstein condensation actu-
aly and what are the mathematically correct criteriafor
this phenomenon? What is the relation of Bose conden-
sation to coherence and to gauge symmetry breaking?
Whét is the true meaning of the famous Gross—Pitae-
vskii equation? Is it possible to produce non-ground-
state condensates?

Trapped atoms compose a nonlinear nonuniform
system, whose description is essentially more compli-
cated than that of uniform systems. We explain in more
details than usually done mathematical techniques
helping to treat such nonlinear and nonuniform prob-
lems. This especially concerns those original methods
that have been devel oped recently and which cannot be
found in other reviews.

Our paper contains some fresh topics that have not
been reviewed earlier. Among these are: the stratifica-
tion of condensate components moving with respect to
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each other; resonance formation of topological coher-
ent modes and critical effects that can arise during this
resonance process; nonadiabatic dynamics of trapped
atoms and their escape from atrap.

Finaly, in Chapter 17, the problems of describing
and measuring Bose-Einstein condensate in quantum
liquids, such as superfluid helium, are discussed. This
makes it possible to better understand analogies and
differences between liquids and gases.

CHAPTER 2.
BASIC NOTIONS

The classical approach to statistical mechanics
starts with Boltzmann's probabilistic analysis of the
velocity distribution of an ideal gas. For a gas com-
posed of particles of mass m at temperature T, the
velocity distribution is given by the well-known Max-
well-Boltzmann (MB) law [32]

_om r? O “'VZD
V) = exp=— , 2.1
9(v) O /—anBTD PO 2k TU (2.1)

where kg is the Boltzmann constant. The Maxwell—
Boltzmann law was first experimentally tested by Otto
Stern in 1920 using a primitive atomic beam and a
time-of-flight technique based on a velocity-selective
rotating drum. With the advent of laser spectroscopy,
the MB law and its limitations could be tested with
highly improved precision. This law describes well the
behavior of weakly interacting atoms at high tempera-
tures. Deviationsfrom it areinsignificant until quantum
mechanical effects assert themselves, and this does not
occur until the temperature becomes so low that the
atomic de Broglie wavelength becomes comparable to
the mean distance between particles. For agasin equi-
librium the characteristic wavelength (2 = h/2m is
Planck’s constant) is

Ao = |2
dB mksT"

For ageneral system with density n, the mean distance
between particlesis 3, Quantum effects are expected
to show up for N3 ~ A ;5(T), so that the boundary to this
regimeis defined by

(2.2)

2
keT(n) = 222 2.3)
For example, an atomic gas at 900 K and n ~ 106 cm
is safely within the classical regime, since n”/3 ~
106 cm > Ay =10° cm. To witness quantum effects
one needs atoms at low temperature and relatively high
density. For most gases, not for polarized hydrogen
(H1), lowering the temperature or increasing the den-
sity promotes the system to liquidity before the quan-
tum regime is reached. Even for liquid helium, obvi-
ously a quantum system, the problem becomes com-
plex when we face a strongly interacting liquid.

COURTEILLE et al.

All particles of the quantum world are either bosons
with integer spin or fermions with haf-integer spin.
Fermions do not share a quantum state, because they
must follow Pauli’s exclusion principle. They obey a
guantum statistical distribution called Fermi—Dirac
distribution. In contrast, bosons enjoy sharing a quan-
tum state and even encourage other bosonsto join them
in a process called bosonic stimulation. Bosons follow
a quantum statistical distribution called Bose-Einstein
distribution (BE). In this article, we will mainly focus
on the Bose-Einstein distribution. The basic difference
between MB statistics and BE statistics is that the
former applies to identical particles that are distin-
guishable from one another in some way, while the lat-
ter describes identical indistinguishable particles. For
Bose-Einstein statistics, one can derive [33] the Bose—
Einstein distributed occupation number for a nonde-
generate quantum state at energy € when the system is
held at temperature T,

1
f(e) = eB(E_—“)—l )

where we used the short-hand notation 3 = U/kgT. The
chemical potential p is an important parameter of the
system, which helps normalizing the distribution f(€) to
the total number of particles,

N =Y ).

Similarly, the total energy of the systemis given by
E = zgf(e).

(2.4)

(2.5)

(2.6)

A very remarkable effect occurs in a bosonic gas at
a certain characteristic temperature; below this temper-
ature a substantial fraction of the total number of parti-
cles occupiesthe lowest energy state, while each of the
remaining statesis occupied by a negligible number of
particles. Above the transition temperature the macro-
scopic observables of the gas, like pressure, heat capac-
ity, etc., receive contributions from all states with the
appropriated statistical weight without preference for
any specific state. Below the transition temperature, the
observables are altered by the macroscopic occupation
of the ground state, which results in dramatic changes
in the thermodynamic properties. The phase transition
is named after Shandrasekar Bose [1] and Albert Ein-
stein [2] Bose-Einstein Condensation (BEC).

2.1. Bose-Einstein Condensation of Ideal Gas

One of the key points in understanding BEC is the
behavior of the chemical potential p at very low tem-
peratures. The chemical potential isresponsible for the
stabilization of thelarge number of atomsin the ground
state Ny. A system of alarge number N of noninteract-
ing bosons condensesto the ground-state as the temper-
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ature goes to zero, Ny — N. The Bose-Einstein
distribution function (2.4) gives the ground state popu-
lation, €, = 0, in the zero-temperature limit, N =

lim(e®™-1)"
T-0
Z=e

= —1/By, or in terms of the fugacity

ZO1-1/N. 2.7)

We should also note that the chemical potential in a
bosonic system must always be lower than the ground-
state energy, in order to guarantee non-negative occu-
pancy f(g) of any state. Z ~ 1 denotes macroscopic
occupation of the ground state. We define the critical
temperature for Bose-Einstein condensation via the
occupancy of the ground state. Above this temperature
the occupancy of the ground state is not macroscopic,
below thispoint it is.

For a noninteracting Bose gas with N particles of
mass m confined in a hard-wall box of volume V = L3
the critical temperature for BEC can be calculated by
Eqg. (2.3). The boundary conditions require that the
momenta satisfy p, = 21l /L, wherej = x, y or zand |
are mtegers Each state is Iabeled by aset of three mte
gers(ly, Iy, 1,). Inthethermodynamic limit, the sum over
al quantum states may be converted to an integral over
a continuum of states,

N —J’dp (2.8)

For afreegas Wlth energy € = p%2m, we can derive the
density of states p(€) from the normalization of the
phase space,

1= h‘3IId3r d’p

o ° (2.9)
= Zm/fn?’h%-[ﬁm EIp(s)ds.

The density of statesbasically depends on the geometry
of our system. For a homogeneous system we find

p() = 2r./2m’ VIh3.J& , but we can easily extend this
result to inhomogeneous systems (Section 2.2). We
should, however, keep in mind that the density of states
approach is an approximation which might not be valid
for experiments with limited numbers of atoms (Sec-
tion 2.5). Using the occupation number f(g) for the
Bose-Einstein distribution (2.4), in the thermodynamic
limit, we calculate the total number of particles,

- -3 3 3
N = Nog+h J’J’f(e(r,p))d rd’p (2.10)

v, %
= No+ J’f(s)p(e)ds = Ny+2m/2m — I B(i me ,

[

where the ground state population N, is explicitly
retained. In the process of converting the sum into an
LASER PHYSICS Vol. 11
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integral (2.8) the density of states goes to zero
approaching the ground state. Thiserror is corrected by
adding a contribution N, to the integral. At this point,
we introduce the Bose function that will help to sim-
plify the notation by

© ot
-v2
(2 = ;tn (2.12)
and itsintegral representati on
X1~ 1
dx
gl’](z) r(rl)I rx ’ (2.12)

wherel (n) denotesthe Gamma function. With this def-
inition, Eq. (2.10) reads

BH
)\dB( )93/2( )-

We can use Eq. (2.13) to calculate the critical tempera-
ture TS, defined through N, — O and u — 0. Above
the phase transition, T > TS, the population is distrib-
uted over all the states, each state being weakly occu-
pied. Below TS the chemical potential is “pinned” at

K = 0 and the number of particles occupying the excited
statesis

N = N, + (2.13)

__V mLingG
N erm — N !
th Ao(T )3,293/2( 1) = Dl_qj

with g3,(1) = 2.612. Since Ny + Ny, = N, the number
of particlesin the ground state becomes

(2.14)

which is the fraction of the atomic cloud being con-
densed in the ground state. The abrupt occurrence of a

finite occupation in a single quantum state at TS indi-

cates a spontaneous change in the system and athermo-
dynamic phase transition. We will come back to thisin
Section 2.7.

2.2. Thermodynamics of Ideal Confined Bose Gas
If the atoms are confined in a spatialy varying

potential, the critical temperature Tg can be signifi-

cantly altered. The critical temperature depends on the
general shape and on the steepness of the potential. We
consider N particles of an ideal Bose gas distributed
over various quantum states of an arbitrary potential.
The occupation number f(g) of particles in an energy
level € istill given by (2.4), the ground state energy is
set to zero. In the thermodynamic limit, the relation
between the chemical potential and the total number of
particles is given by generalization of Eqg. (2.10), with
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the appropriate density of states p(g). The density of
states for an arbitrary confining potential U(r) can be
found by a generalization of the calculation for the free
gas. The volume in phase space between the surfaces of
energy € and € + de is proportional to the number of
states in that energy interval. However, the external
potential limits the space available to the gas. The den-
sity of states is calculated in analogy to Eq. (2.9) and
yields [34, 35]

p(e) = 2m/2_3hi3J' Je=un)dr,

VL)

(2.15)

where V*(¢) is the available space for particles with
energy €. We assume a generic power-law potential
confining an ideal Bose gasin a dimensions,

x|t

u(r) =

i=1

(2.16)

and define a parameter describing the confinement
power of the potential,

n = (2.17)

NIQ

‘1
2

Although the temperature isthe basic thermodynamical
state variable, the system needs to be characterized by
other variables. Heat is not a state variable, because the
amount of heat required to raise the temperature of the
system depends on the way the heat istransferred. The
heat capacity quantifies the ability of the system to
retain energy. In conventional systems, the heat
capacity istypically either given at constant volume or
a constant pressure. With this specification heat
capacities are extensive state variables. When crossing
a phase transition, the temperature dependence of the
heat capacity measures the degree of changes in the
system above and below the critical temperature and
provides valuabl e informations about the type of phase
transition.

Thetotal energy of the system is given by

00

E(T) = J’ ef(e)p(e)de. (2.18)
0

For a confined gas, volume and temperature are con-
nected, and the concept of pressureis somewhat vague.
In this case we cannot refer to heat capacity at constant
volume or constant pressure. However, we may define
the heat capacity at afixed number of particles,

OE(T)

c(T) = 3T

(2.19)
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Keeping the implicit temperature dependences of the
thermodynamic variables in mind, we can evaluate this
derivative:

[

c(T) = BIsf(s)zp(s)[u‘(T) +%‘}eﬁ(s‘“’d3, (2.20)

where the derivative of the chemical potential from
above T — T0 is

J's f(€)°p(e) €™ de
1y
-2

J’f(s)zp(s) e*de

W(To) = (2.21)

It is especially interesting to compare the disconti-
nuity of the heat capacity and of its derivative 0C(T)/0T
for various potential power laws and dimensions of
confinement, since this may clarify the nature of the
phase transition. The thermodynamic quantities take a
particularly ssmple form for power law potentials. The
calculations are analogous to those carried out for
homogeneous Bose gases (last section), and we restrict
ourselves hereto giving the general results for the ther-
modynamic quantities [35, 36], e.g., interna energy E
and heat capacity C:

No _ o T"%(2)
N brd g,(1)’
E — gr]+1(z)
NkgT gn(Z) ’
Cror Oy +1(2) 2 On(2)
i = N+ )T o=t (222
Nk, - 1Dy oy e @
CT<Tc — gr]+1(1)
NKa n(n +1)m,
AC, _C=Cp £z ()
NKg NKkg O -1(1)

The Bose functions at zero chemica potentia are just
the familiar Rieman zeta functions, g,(1) = {(n). The
expression for the critical temperature for N particles
confined in a generic power-law potential in a dimen-
sions reads

Un
hC(
(2rim)*”

|z

1

g (D[ ]are+1)

T = kg . (2.23)

a

N

To evaluate the temperature dependence of the thermo-
dynamic variables, following K. Huang [32], we calcu-
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late the fugacity Z(T) = e’ from the second equation
of (2.22). For T > T, we derive the fugacity as the root
of g,(2) = gy(D(TJ/T)" and for T < T, the fugacity is
smply Z= 1.

Let us give two examples for three-dimensional
confinement, a = 3. The homogeneous 3D box poten-
tial inside a volume V is obtained from the power-law
formula by setting t; — oo so that n = 3/2. Evaluating
the density of states (2.15), we find N = N, +

Gao(DVIA G

For an anisotropic harmonic potential, U(r) =
m 2 2 m 2 2 m 22 — .
wax + Ewyy + szz , we have n = 3. We intro-
duce the geometrically averaged secular frequency

Wyap = (WWW)Y3, and the size of the ground state

Qyap = /HIMWy,,. Evaluating the density of states
(2.15), wefind N = Ny + (KgT/A0y4p)°03(Z). The values
for confinement power, critical temperatures, heat
capacity and its discontinuity at the phase transition for
severa potential configurationsare showninFig. 1 and
summarized in Table 1.

Table 1 shows that steeper potential wells (i.e.,

smaller a, b, and ¢) give higher values for TS . Thecrit-

ical temperature also depends on the confinement
power of the potential

_TerdNg

N T Or = v (2.2

r]:

Larger values of the confinement power result in higher
TS . A strongly confining potential can lead to quantum
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degeneration at much higher critical temperatures and
greatly facilitate experimental efforts to achieve BEC.
At a given temperature, a strongly confining potential
reduces the minimum number of trapped particles
required for condensation.

Itisalsointeresting to note, that from the values pre-
sented in Table 1, the changes in heat capacity at the
phase transition are larger for any power-law potential
than for arigid wall container. This is due to the fact
that increasing the energy of the gas requires to work
against the confining potential.

2.3. Low-Dimensional Systems

The trapping potentials can technically be designed
to be very anisotropic, reaching amost two-dimen-
sional pancake-shaped or one-dimensional needle-
shaped configurations. The thermodynamics for such
systems can easily be formulated as limiting cases of
the genera formulae presented in the last section
[36, 37]. Wewill first discussaBose gas confined in aone-

DT 1 th
Bk In this
case, the confinement power (2.17) readsn = 1t + 1/2.
From the general formula for the critical temperature
(2.23) we get

dimensional power law potentia, U(X) =

kTP = O h N 1 N
®7¢ 7 Qomm)¥22ar(n + 12)g, (1

According to the properties of the zeta function,
gy(1) = ¢(n) isfinite only if t < 2. Therefore, the one-
dimensional confined gas will exhibit BEC only if the
potential power islessthan 2, i.e., only if the external
potential is more confining than a parabolic potential.

(2.25)

Table 1. Critical temperature, condensed fraction, heat capacity and its discontinuity at the phase transition for various trap-
ping potentials. V denotes a three-dimensional and S atwo-dimensional volume

u(r) n ko C(T;)/Nkg | AC(TC )/Nkg
-~ . 2/3
3D box 3 Nh 1 1.02 0
2 g(znm)?’/nga/z(l)
1/2
2 r 3
Nh 1
% 2 = } 4.38 0
L(2mm)™ “1"aSgy,(1)
z O -~ . 2/5
b 27 5 _Np° 1 6.88 335
2 3/2 ) )
Eoo, 2< dg ¥(2T[m) asSl4
1/3
2 2 2 r 3 1/3
0, D0, 2 3 Nh 1 = hioy,,, AN O 10.82 6.57
el B el | (2mm)¥ 1’2 abega(1) rePLgs(1)
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Heat capacity, C/kgN
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Fig. 1. Condensed fraction and heat capacity at the phase transition for a homogeneous gas (dotted line) and for a harmonically

trapped gas (solid line).

For atwo dimensional power-law potential whichis
t t

o, DO
wl

[&]
Eq. (2.17) reads n = 2/t + 1 and the critical tempera-
tureis

symmetric in both directions, U(x, y) =

0 2 o
kBTiD -5 h ﬁz 1 _ .
[(Pmim4a” I (n/2 + 1/2)°g,(1)O

(2.26)

Unlikein the 1D case, g, (1) remains finite for all posi-
tive values of t. Consequently, for a confined 2D sys-
tem, BEC can in principle occur, except for homoge-
neous systems wheret —» oo,

2.4. Semiclassical Density Distribution

An effect of the inhomogeneous confining potential
isagpatial compression of the cloud during cooling and

crossing To. The behavior of this spatial compression

can be and has been used as a signature for the occur-
rence of BEC (Section 3.2.1). In the following, we will
calculate the temperature dependence of the spatial
density profile near the critical point. We start with [38]

n(r)
Z f(€)|we(r)|? for T>T¢

£=0

(2.27)

00

No|Wo(r)|* + z f(€)|we(r)|? for T<T

&

0 g
4 g
4 g
4 o
O u

The temperature dependent occupation numbers f(g)
and the wavefunctions (r) for al states have to be
known. Furthermore, we must know p(T), which isan

important parameter for determining the occupation

number f(g) for T > TS. Therefore, Eq. (2.27) is quite
difficult to evaluate analytically. There is, however, a
different way to do this. The number of particles occu-
pying a given phase space cell is

dN = h2f(e)d’pd’r,

wheref(g) is

f(e(r,p) =

(2.28)

1
- .
QB2 U0 -1 _ 4

(2.29)

The total density of the normal fraction in position
space is found by integrating over momentum space

ne(r) = h~ J’f(s)dsp = Agada[€ VY], (2:30)

where we make use of theintegral representation of the
Bose function. This formula holds for any trapping
potential. If we may now for simplicity assume a har-

monic oscillator, U(r) = —rznooix2 + gwiyz + —rznoofzz,
we can similarly calculate the momentum distribution

by integrating over position space

fu(p) = W[ f(e)dT
, (2.31)

= i Ags@apGazl €™ " 7],

where ay, is the size of the ground state of the har-

monic trap. Of course, by integrating the distributions

(2.30) and (2.31) we recover the normalization (2.10):

N = jﬁm(p)ds'p = jnm(r)of'r. (2.32)

When evaluating (2.30) using a semiclassica
approach, we left out the ground-state contribution,
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which is in fact negligible above the phase transition
TC. Below Tq, the contribution of the ground-state to
the density (2.30) is given by Ng|yol’, where i,

OOoOodd

n(r) =

|

To obtain the evolution of n(r) while the system is
cooled down across the phase transition, it is necessary
to know the fugacity Z as afunction of temperature. We
can either numerically solve the second equation of
(2.22) separately above and below the phase transition,
or we can approximate the fugacity by a series as

described below. Above TC Eq. (2.5) can be written
ze*

N = Zl_Ze—Ba = Zzlzje_ms.

€ € i=

The sum can be transformed into an integral in the con-
tinuum-of-states approximation:

N = . D Z,
2"

where D, = F p(e) e7Pede. This series relates the num-

ber of particles with the fugacity, where the coefficients
D; carry al information about the external potential.
The seriescan beinverted yielding valuesfor the fugac-
ity Z. For the harmonic oscillator, we obtain the explicit
expression

(2.34)

sl T
Z = 120035 -0.1803-
(2.35)

09
—0.010 %;‘% + higher orders.

We can now evaluate (2.33) at any temperature. For
simplicity, we consider the density at r = 0. Asafunc-
tion of temperature, the peak density n(0) exhibits a
sudden jump, proportional to N¥2, at the critical tem-
perature (Fig. 2). Thisbehavior isfrequently used asan
experimental indication for the occurrence of BEC [3].
Larger total particle numbers N make the identification
easier. For small numbers, the density jump decreases
and eventually may bewashed out by fluctuationsinthe
thermal distribution.

Intuitively, one expects Bose condensation to set on
when the mean distance between the particles is
LASER PHYSICS Vol. 11
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describes the ground state of the trap. If we assume a
harmonic oscillator potential U(r) = g w’r2, we expect
a Gaussian distribution for the ground state density

m 22

} for T=T2
2.33
@39

’ -3 —$3
+ )\dB(T)gs,z[e } for T<T

o o [

approximately A4z. Indeed, the density distribution

(2.33) takes a value of n, = Ajsgy(1) at the critical

point irrespective of the nature of the confining poten-
tial. The main effects of inhomogeneous trapping is to
concentrate the density at asmaller region of space and
to facilitate the formation of BEC in this region. The

guantity n(O))\gB = gs(2) is often called phase space
density of the gas.

2.5. Finite Number of Particles

The condensates experimentally produced in akali
gases consisted of relatively small atom numbers
between 1000 to 107, so that the validity of the thermo-
dynamic approximation and the use of the density of
states approach has been questioned [39]. Also, the
decision whether to use the grand canonical, the
canonical or the microcanonical ensemblefor calculat-
ing the thermodynamic quantities noticeably influences
the results. Herzog and Olshanii [40] have shown that

n(0) X Ag*(T)

1000 -
100
101
1_
1 1 1 1 1 ]
0 025 050 075 100 125 150
T/T,

Fig. 2. Peak density at the phase transition for a harmoni-

caly trapped ideal Bose gas of 10° rubidium atoms. The
trap secular frequency is set to tyzp = 21T X16 Hz.
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Heat capacity, C/kgN
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Fig. 3. Heat capacity at the phase transition for N = 100
(continuous line), N = 1000 (dashed line), and N = 10000
(dotted line).

for small atom numbers on the order of 100 the canon-
ical and grand canonical statisticslead to predictionson
the condensed fraction that differ by up to 10%. On the
other hand, they give the same results if the particle
numbers are large. Which canonical statistics is more
appropriate is not atrivial question and depends on the
experimental setup and in particular on the time scale
of the measurements. If welook at the sample for short
times, the number of condensed atoms will be fixed,
and we can assume a canonical ensemble. For longer
times, however, the atom number may be an equilib-
rium parameter depending on the contact of the sample
with a reservoir, and the grand canonical statistics is
better suited.

Assuming grand canonical ensembles, we will now
discuss the impact of finite atom numbers on the prop-
erties of a Bose gas at the condensation threshold and,
in particular, on the transition temperature and the heat
capacity [39-43]. To illustrate this point, we numeri-
cally calculate the heat capacity of a Bose gas confined
in a three-dimensional isotropic harmonic trap. The
energy eigenvalues g, are:

€n = MAW. (2.36)
For athree-dimensional trap, we must take the degen-
eracy Y, for the levelsinto account,

= %(m+ 1)(m+2). (2.37)

We numerically integrate the expression for the number
of atoms

N = mzoym f(e,), (2.38)
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in order to extract the chemical potential u(T) from the
occupation number (2.4). We start using a certain lim-
ited number of levels m and subsequently add more
until the result converges. Knowing pu(T), we can easily
estimate the other thermodynamical quantities. The
total energy of the systemiis

BT = 5 Vnf(enem (2.39)
m=0

and the heat capacity is derived from its definition
(2.19) in analogy to the continuum-of-states formula
(2.20) [43],

YmEm€ " e

B(s - T (2'40)

)
c(T) = B z E,s(s -+ 3

where

- B(‘c’m_ )
Y VnlEn—e " (e’
Ol - _lnzo L (24

oT T
z ymeB(Em—u) f(8m)2
m=0

Figure 3 showsthe results of the numerical calculations
of the heat capacity for different values of N. The criti-

cal temperature T(c’ isdefined at this discontinuity. If we
define the critical temperature T, to coincide with the
maximum heat capacity (where dC/0T = 0), we find

T./TY =0.813, 0.898, and 0.946 for N = 100, 103, and

10%, respectively. The lowering of the critical tempera-
ture for decreasing numbers of particles is due to the
fact that smaller systems have larger available effective
volume. In the thermodynamic limit (N — ) the dis-
continuity appears very clearly. As N decreases, C(T)
gets smoother at the transition and the discontinuity
disappears. Strictly speaking, the finite system does not
undergo a phase transition. On the other hand, the devi-
ation of the behavior of a large finite number system
from the thermodynamic limit is reasonably small to
justify talking about phase transition.

Grossmann and Holthaus [39] derived analytic
expressions for grand canonical ensembles and har-

monic trapswith @ = (wwy) 3 and @ = %(wﬁ w, +

w,). For the condensed fraction and the critical temper-
ature they found:

N
0 = 0,2
2.42
1 DTD393(Z) 30 T2 92 (242)
F0 gD 2NRED g, 1)?
LASER PHYSICS Vol. 11 No. 6 2001



BOSE-EINSTEIN CONDENSATION OF TRAPPED ATOMIC GASES

T=ToH- ©_ %0 (2.43)

20N g,(1) 7

2.6. Atomic Interactions in Nonideal
Confined Bose Gas

Until now, we only considered non interacting ideal
gases. The thermodynamic behavior of such systemsis
solely governed by statistics or, at low temperatures, by
guantum statistics. Real systems are aways affected by
particle interactions. Often particle interactions are so
dominant that they blur the quantum effects. Interac-
tions cause quantum depletion of the condensate phase
even at zero temperature. In the case of superfluid “He
only a small fraction, typicaly around 10%, is in the
ground state. However, far from being only anuisance,
atomic interactions enrich the multitude of physical
phenomena. They giverise to nonlinear behavior of the
de Broglie matter-wave exploited in nonlinear atom
optics (Section 5.4), and the strength of the interactions
can even be tuned close to so-called Feshbach collision
resonances (Section 6.1).

The grand canonical many-body Hamiltonian of a
trapped Bose gas, interacting through the local s-wave
collision potential, in second quantization reads

H = Idzr ()

52 g , (2.44)
X[ = + Uieglr) =1+ 2100017 0,

where (i(r) denotes the bosonic field atomic annihila-
tion operator and satisfies the Heisenberg equation of
motion. The interaction strength g = 4mi%a/m only
depends on a single atomic parameter, the scattering
length a. A common approximation is the Bogolubov
prescription, where the field operators describing the
condensate and thermal phase can be decomposed into
a complex function Yy(r) = O(r) Ocalled condensate
wavefunction which can be chosen as the order
parameter of the system and into a small perturbation
OQ(r) = Q(r) — Yy(r) describing the thermal excita-
tions. At zero temperature, we can neglect the thermal
excitations [44] and our system iscompletely described
by a single wavefunction Wg(r, t) that follows the
Gross—Pitaevskii eguation,

h? 2
— 5=+ Uy(r) + g[Wolr, )] [Wo(r, 1)
[ 2m- " T ’ } ’ (2.45)

- ih%wo(r, 9.

2.6.1. Semiclassical approximation. If we addi-
tionally assume i < kgT, we can apply the semiclas-
sical WKB approximation, i.e., the atomic motion does
not have to be quantized and the trap has a continuous
energy spectrum. We can then replace coordinate and
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momentum operators by their expectation values and,
with the abbreviations £(r, p) = p%/2m+ Uyap(r) —p +
2gn(r) and n(r) = ny(r) + ny(r), we get a set of two
semiclassical Bogolubov equations
ZL(r, p)u(r, p) —gno(r, p)v(r, p) = &(r, p)u(r, p),
L(r,p)v(r, p) —gne(r, p)u(r, p) (2.46)
= _S(rv p)V(r, p)v
where the phonon creation amplitude u(r, p) and the
phonon annihilation amplitude v (r, p) obey the nor-
malization condition u(r, p)?>— v (r, p)?> = 1. They relate

the particle distribution function F(r, p) and the quasi-
particle distribution function f(g) = (e P) — 1)~ by

F(r,p) = (u(r, p)I*+Iv(r, p)") fe).  (247)
The spatial distribution of the thermal density is calcu-
lated from
Ne(r) = h_3IF(r, p)d’p (2.48)
and analogously for the momentum distribution. The
last equation represents a generalization of Eq. (2.30)
for interacting particles at al excitation energies. The
Bogolubov equations (2.46) yield a simple expression
for the excitation spectrum

e(r,p) = JL(r, p)*—g°n¥(r). (2.49)

They can be solved numerically [45] or approximated
analytically. All thermodynamic quantities can be
derived from the distribution functions and the spec-
trum. For example the entropy reads S =

kgh™2 I (Bef(e) —In(1 —ePe)derd®p, the heat capacity

isC=T(0S0dT)y, and thetotal energy followsfrom C =
(0E/0T)y. For homogeneous systems, where the wave-
functions are plane waves, the energy spectrum takes
the well-known local-density form of the Bogolubov
dispersion relation,

2 2
(. p) = sz—m%+ 20no(r )5

which has been used to calculate particle-like excita-
tions, p%2m > gn(r), and phonon-like excitations,
p2/2m < gn(r) (Sections 4.3.1 and 5.4.2).

Severa interesting results can be obtained by
restricting the analysis to energies that are much larger
than the chemical potential, €(r, p) > Y. From the
Bogolubov equations, we then derive a particularly
simple Hartree-Fock type spectrum

(2.50)

p2

—+ +2 .

o+ U + 2gn(r)
Asarough approximation, above T;, we can neglect

the influence of the interactions on the density distribu-

tion, plug the semiclassical expression (2.30) into the

gr,p) = (2.51)
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Hamiltonian and recal cul ate the thermodynamic poten-
tials with the effective potential Ug(r) = U(r) +

OA e o[ €3 ~ UM [35]. In the case of a harmonic
potential, the condensate fractionis

Ng _ 1_DID3_4iDID7/2

N ezl

X E=1 (2.52)

wherethe Tg isthe critical temperaturein theideal gas

limit (Table 1). The critica temperature modified by
interactions is estimated from (2.52) by setting N = 0.
For positive scattering lengths, the phase transition
occurs at lower temperatures. This can be understood
intuitively, because the repulsive particle interaction
associated with positive scattering lengths counteracts
the density compression required for initiating the con-
densation process.

Giorgini et al. [45] numerically integrated the semi-
classical Bogolubov equations and derived the density
distributions and the main thermodynamic quantities
for atoms trapped in harmonic potentials. Among other
results, they found that repulsive interactions strongly
enhance the thermal depletion of the condensate. They
also confirmed the decrease of the transition tempera-
ture and noticed a smoothing of the temperature depen-
dence of the heat capacity at the phase transition due to
collisions. For ideal gases, we set g — 0inthe Bogol-
ubov equations (2.46) and recover the results of the pre-
vious sections. The excitation spectrum is simply,

2

b_, u(r) — .

gr,p) = om (2.53)

2.6.2. Attractive interactions. The atomic interac-
tion potential decides on the value of the scattering
length a: A repulsive potential correspondsto a positive
a. For a purely attractive potential that supports no
bound state a is negative, and for an attractive potential
that supports bound states a can be either positive or
negative depending on the proximity of the last bound
state to the dissociation limit.

A negative scattering length may, at first, seem
desirable, because it rises the BEC threshold tempera-
ture according to EQ. (2.52). However, attractive
interactions raise other problems. The interaction
energy of a Bose-Einstein condensate is given by
4mi%an/m and, if the scattering length is negative,
decreases with increasing density n. The condensate
attempts to lower its interaction energy by increasing
its density until it collapses [46] by inelastic two-body
spin exchange processes or three-body recombination
processes. This holds for homogeneous condensates.
However, when confined in a trap, the zero-point
energy exerts a kinetic pressure which balances the
destabilizing influence of the interactions, so that small
condensates are expected to be stable. Calculations for

COURTEILLE et al.

spherical traps predict [47] Ny, = 0.575a,,,/ [a], where

By = AT

2.7. Classification of Phase Transitions

Ehrenfest classification. Because of the huge vari-
ety of phase transition phenomena, a general classifica
tion is not easy. The first attempt was undertaken in
1933 by Ehrenfest. He proposed the following classifi-
cation scheme founded on the thermodynamic proper-
ties of the phases. A phasetransitionisof nt order if the
n" derivative with temperature of at least one of the
state variables, e.g., chemical potential u(T), interna
energy E(T) or entropy ST), is discontinuous at the
transition point whereas all lower derivatives are con-
tinuous [48]. As an example: the liquid—gas phase tran-
sition is of first order, because /0T is discontinuous.

In order to characterize the Bose-Einstein phase
transition, we investigated the temperature dependence
of the heat capacity in Section 2.2 (Table 1 and Fig. 1).
We saw that, depending on the type of the confining
potential, the occurrence of a thermodynamic phase
transition can be quite remarkable through a disconti-
nuity of the heat capacity C(T) = dE/0T at the critical

temperature Tg . For ageneric power law potential, the

discontinuity depends on the confinement power n. If
the confinement power is n < 2, for example for a
homogeneous system (3D-box), the discontinuity of
C(T) disappears, but dC/OT remains discontinuous.
However, in any case the chemical potential exhibitsan

abrupt change of itstemperature dependence at TS e,

JW/aT is discontinuous. This aspect is very similar to
liguid—gas phase transitions. Therefore, adopting
Ehrenfest’s classification scheme, Bose-Einstein con-
densation of an ideal gas takes place as a first order
phase transition regardless of the shape of the confin-
ing potential.

The Bose-Einstein condensation of a homogeneous
system is often called a condensation in momentum
space, because the phases do not separate [49]. It is
important to note, that the phase separation is not an
essential feature for BEC and does even occur in a
homogeneous system under the influence of gravity
[32], because the dense condensate has a negative
buoyancy inside the normal fraction. In harmonically
trapped gases, the condensed and thermal fractions spa-
tially separate to a large extent, since the condensate
nucleates at the center of the thermal cloud, where the
density is highest. The process must then be considered
a condensation in phase space.

We have seen in the Sections 2.4 and 2.6, that
atomic interactions and finite ensemble sizes smooth
out the discontinuities. As aresult, in Ehrenfest’s clas-
sification scheme first order transitions become second
or higher order transitions [32]. The different classifi-
cation suggests a fundamental change in the quality of
the transition due to interactions. We should, however,
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keep in mind that the reason for the occurrence of the
BEC phase transition is the symmetry of the bosonic
single-particle wavefunction, and that forces between
the particles rather tend to blur the quantum statistical
nature of the process. In the case of the strongly inter-
acting liquid *He, the heat capacity changes smoothly
and exhibits a A-shaped peak at the critical point.

Ginzburg-Landau classification. Landau empha-
sized therole of symmetry in thermodynamics by intro-
ducing the notion of the order parameter [50], which
he defined as a very general macroscopic measure for
the amount of symmetry in a system. Symmetry con-
siderations play an important role at phase transitions,
and many types of phase transitions change the symme-
try of the system. Typically the phase with the higher
temperature is more symmetric. The order parameter is
zero for this phase and nonzero for the less symmetric
phase. An order parameter can also be defined, if the
symmetry apparently does not change as it is the case
for the phase transition from liquid to gas: Both phases
areisotropic. Order parameters may be very differentin
nature, depending on the specific system and type of
force driving the phase transition, e.g., they may be
c-numbers, vectors or even many-body quantum fields.
In the case of Bose condensation, the condensate den-
sity is often taken as the order parameter. When cross-
ing the phase transition from high to low temperatures,
the system can spontaneously adopt a symmetry that its
Hamiltonian does not have, i.e., the symmetry is bro-
ken, and the order parameter takes a value different
from zero. For example, the transition from liquid to
solid breaks the translational symmetry.

Landau labeled a transition first order, if thereis a
discontinuous change in the order parameter and con-
tinuous transition or critical phenomenon, if the order
parameter goes smoothly to zero at T.. Applying the
Landau criterion to Bose gases, we find that BEC is a
second-order phase transition, because the temperature
dependence of the order parameter is continuous at the
critical point regardless of whether the gas interacts or
not (Fig. 1). The Landau classification seems therefore
more appropriate for the Bose-Einstein phase transi-
tion.

CHAPTER 3.
MAKING AND PROBING
BOSE-EINSTEIN CONDENSATES

Thefirst hint, that Bose-Einstein condensation was
more than just a theoretical fantasy came from London
[49] who connected the newly found phenomenon of
superfluidity in “He to BEC. However, the interpreta-
tion of the A point in terms of BEC was not obvious
because strong particle interaction blur the quantumsta-
tistics, and the thermodynamic quantities exhibit diver-
gences at T, rather than discontinuities as expected
from ideal gas BECs. The occurrence of BEC is
inferred from its influence on the bulk properties of the
system. These uncertainties motivated intense search in
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other systems. In 1954, Schafroth pointed out that elec-
tron pairs can be viewed as composite Bosons and
might Bose-condense at low temperatures [51]. In
1957, Bardeen, Cooper, and Schrieffer developed the
microscopic theory of superconductivity [52], a phe-
nomenon that has been related to Bose condensation of
electron- or Cooper-pairs by other researchers includ-
ing Blutt, Schaffrot, Frohlich, and Bogolubov.

Motivated by the need to test the concept of com-
posite-particle or quasi-particle condensation in weakly
interacting systems, in 1962, Blatt et al. proposed the
investigation of BEC in exciton gases[53]. Excitonsare
bound electron-hole pairs that can form aweakly inter-
acting gas in certain nonmetalic crystals. They are
interesting because their small mass permits BEC at
high temperatures, their density can be controlled over
awide range by modifying the optical excitation level,
and they are destructible. Excitons were discovered in
1968 and the first evidence of Bose—Einstein condensa-
tion of biexciton-moleculesin CuCl crystal dates from
1979 [54]. One year later, the influence of Bose—Ein-
stein statistics on orthoexcitons (S= 1) was observed by
Hulin et al. in CuO,, and finally the condensation of
paraexcitons (S= 0) in 2 um thick stressed CuO, films
by Lin et al. [55]. They achieved BEC at densities
above 10* cm and transition temperatures close to
T.=50K.

Hecht [56] suggested in 1959, followed by Stwalley
and Nosanow [57] in 1976, that spin polarized atomic
hydrogen would be a suitable candidate for BEC. In
1978 Greytak and Kleppner at the MIT started inten-
sive efforts to form BECs in dilute hydrogen gases. In
the nineties, advances in cooling atoms by laser light
led to realy low temperatures, and the invention of
traps for neutral atoms alowed their confinement and
the compression of their density. This initiated efforts
to try to realize BEC in akalis, which have an elec-
tronic level scheme that lends itself to optical cooling.
Later, it turned out that the phase space density in opti-
cal trapsis limited by optical rescattering effects. As a
solution to this problem peopl e started to trap the atoms
by their magnetic dipole moment and to replace optical
cooling by evaporative cooling. This was the final step
towards BEC in alkali gases. The hydrogen experiment,
that initially stimulated the alkali experiments, now
taking advantage from their success could be led to
BEC, aswell.

Today, hybrid optical plus evaporative cooling in
alkai-metals increased the phase space density by a
factor of 10'°. BEC hasbeen achieved in rubidium, lith-
ium, sodium and also in hydrogen. In the present chap-
ter, wewill outline the experimental progressthat led to
BEC in the alkalis by discussing the various techniques
employed.
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3.1. Techniques for Cooling and Trapping

Light interacts in two different ways with the
mechanical degrees of freedom of atoms[58]. One way
is through the force

F = -0,d (E), (3.1)

where d denotes the atomic dipole moment and E the
electric field of the light. The dipole force arises from
the interaction of the light with the dipole, which the
light induces in the atom [59]. It can be understood as
stimulated scattering of photons between the modes of
the light field by the atoms. The force acts in the direc-
tion of the intensity gradient. It is a conservative spa-
tially varying force and therefore interesting for realiz-
ing trapping potentialsfor atoms[60]. A light field with
intensity I, detuned from aresonance wy, by A = w—wy,
givesriseto the dipole force

ZQAo(A)
(e}

F = d(0,E) = (32

where the absorption profile is described by the optical
Cross section o,

2
ool

AN +2Q° +T?
and g, = 3\%/2mis the resonant optical cross section on

a transition whose Clebsch—Gordon factor is equal to
one. Furthermore, the Rabi frequency is introduced by

Q=d-Eh = /o, Nhw. The force (3.2) can be

expressed as the gradient of the conservative trapping
potential

o) = (3.3

I npt+ 4 +rZD (39

The second force is called radiation pressure and
comes from spontaneous scattering of photons at an
atomic resonance. It wasfirst observed as early as 1933
by Frisch [61]. The absorption of a photon from the
light field (wavevector k) imparts a recoil momentum
p = ik to the atom. The subsequent spontaneous emis-
sion isisotropic in the time-average, so that in the aver-
age over many emission processes no momentum is
transferred to the atom. The radiation pressure is dissi-
pative and has been used in optical cooling schemes
[62, 63].

The radiation pressure is velocity dependent. The
velocity dependence comes from the Doppler effect,
which linksthe external degrees of freedom of the atom
(itsmotion) to the internal ones (detuning between light
and atomic resonance frequency): The frequency w of
alight field isincreased or decreased in theinertial sys-
tem of the atom, i.e., relative to the atomic resonance
frequency, depending on whether the atom moves
towards or away from the light propagation direction.
In a red-detuned light field photons are only absorbed
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by counterpropagating atoms, while copropagating
atoms are out of resonance. One can therefore use the
radiation pressure to manipulate the velocity of the
atoms and if need be decel erate them. Often the reduc-
tion in kinetic energy is accompanied by areduction in
kinetic energy spread. Those cases are called optical
cooling. Radiation pressure has been used to decelerate
atomic beams in Zeeman dowers [64] and chirped-fre-
guency slowers [65].

Theradiation pressureforce of alight field on atwo-
level atom (velocity v, linewidth I") averaged over many
absorption-spontaneous emission cycles, is[66]

o
F = fik—0(A—k ). (3.5)

The cooling forceis proportional to the laser intensity, as
long as the transition is not saturated, /1= 2Q3? < 1.
The smallest temperature that two-level atoms can
attain by Doppler cooling is limited by diffusion of the
momentum in phase space due to the stochastic process
of spontaneous emission. Cooling and diffusion heat-
ing are leveled when the atom has the kinetic energy
p%2m=Al/2.

3.1.1. Magneto-optical traps. A frequently used
optical cooling schemefor low temperatures consists of
irradiating the atoms with three orthogonal pairs of
counterpropagating red-detuned laser beams. Radia
tion pressure slows down the atoms without confining
them, and the atoms move likein aviscous medium, the
so called optical molasses [67]. Surprisingly, the tem-
peratures measured in optical molasses were well
below the Doppler limit. The responsible cooling
mechanisms have been identified to be based on optical
pumping between the Zeeman sublevels induced by
polarization gradients [68, 69]. These polarization gra-
dients are aso responsible for the low temperatures
found in Magneto-Optical Traps (MOT). The MOT
was invented by Dalibard and first realized by Raab
etal. [70] and is presently the most commonly used
trap for atoms. It consists of a magnetic field gradient
produced by a quadrupolefield and three pairs of circu-
larly polarized, counterpropagating optical beams,
detuned red from an atomic transition and intercepting
at right anglesin the position of the magnetic field zero.
The MOT exploits the position-dependent Zeeman
shifts of the electronic levels when the atom moves in
theradially increasing magnetic field. The use of circu-
larly polarized, dightly red-detuned light, A = T, results
in a spatially dependent transition probability whose
net effect aims at producing a restoring force that
pushes the atoms towards the origin. The force exerted

by one of the laser beams (wavevector k = ké,) acts pri-
marily on atoms with velocity v = ve,,

B P |
F, = ﬁkhwo(A kv,—h "uz0,B). (3.6)
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Analogous expressions hold for all other beams. For
small displacements and velocities the total force can
be linearized,

mzZ=F,+F_, = —az—-Kz, (3.7)

where a and K denote the friction and the spring con-
stant respectively, and describe adamped motioninside
aharmonic potential,

. 167 KT QA (9,0 erman) o= K
(402 + 1202 +T?)°

The dissipative character of the MOT makes it a
very powerful and versatile tool: At the same time, the
MOT traps up to 10° atoms from the environment, cools
them down to very low temperatures and then confines
them in a potential at densities approaching 10*° cm3.
However, at such high density the atomic cloud gets so
opticaly thick, that photons are scattered several times
before they find their way out. This phenomenon is
termed radiation trapping. The atomic repulsion
induced by the photons at each absorption and emission
blows up the cloud size [71]. To overcome this radia-
tion trapping, Ketterle et al. [72] proposed to keep the
colder atoms that are close to the origin of thetrap in a
dark electronic statein order to prevent them from scat-
tering light. His scheme, presently known asdark MOT
or dark Spontaneous Force Optical Trap (dark SPOT),
takes advantage of the large hyperfine splitting of the
%S, ground state, which allows to selectively excite
and pump both hyperfine substates.

Typically, dark MOTs capture up to 5 x 10° atoms at
densities approaching n = 10'* cm3 and temperatures
below 100 pK. The phase space density for such clouds

isp= n)\ga < 1078, which is still more than six orders

of magnitudes away from BEC. Since it seems impos-
sible to reach BEC in MQOTs, alternative trapping
schemes have been developed, the most promising of
which are dipole force traps using laser light and mag-
netic traps operating without light beams at all.

3.1.2. Far-off resonance dipole traps. For large
detunings, the potential depth (or light-shift) estimated
from Eq. (3.4) reads:

. (3.8)

aszeeman

4N

while the spontaneous light scattering rate y, is propor-

tional to 1/A?. Heating of the atoms due to spontaneous
scattering of photons can therefore be avoided by using
intense, far-detuned laser beams. Such dipole force
trapping potentials are called Far-off Resonance Traps
(FORT) and can be engineered with various geome-
tries. For example, one-, two- or three-dimensional
configurations of red-detuned standing light waves give
riseto arraysof potential valleysin theintensity antinodes
caled optical lattices [73, 74]. The simplest optical
dipole trap (and the first that has been realized [60])

u (3.9)
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consists of a tightly focused red-detuned laser beam,
that confines the atoms at its waist. Atoms trapped in a
crossed dipole beam trap have even been evaporatively
cooled [75]. Alternatively, one can use blue-detuned
FORTSs, where the atoms are confined in local minima
of theintensity profile and suffer less from spontaneous
light scattering [76]. Finally, dipole beams can be used
in conjunction with other trapping techniques (a blue-
detuned FORT was used to repel atomsfrom the center of
amagnetic quadrupoletrap [4]) (Section 3.2.1), to manip-
ulate Bose-Einstein condensates[77] (Section 4.3.1) and
even to trap them [78] (Section 4.2.2).

The optical approach offers the advantage of high
spatial definition and temporal control, e.g., the trap
depth and location can easily be manipulated and mod-
ulated. The trap can be turned on and off very fast com-
pared to magnetic traps and offers the advantage of
being insensitive to magnetic fields, i.e., all magnetic
substates can be trapped. Furthermore, optical subre-
coil cooling schemes that do not work for magnetically
trapped atoms, may be implemented in optical traps.
Velocity Selective Coherent Population Trapping
(VSCPT) led to extremely low temperatures in the
nanokelvin regime [79] and Raman cooling led to very
high phase-space densities [80]. Several groups attempt
to attain BEC using all-optical methods, and it seems pos-
sible to cross the phase trangition in the near future [81].

3.1.3. Magnetic traps. Magnetic traps hold the
atoms by their magnetic dipole moment p = pggeF,
where pg denotes the Bohr magneton and g is the
Landé g-factor for the total atomic spin F =J + | =
(L +S) +1. Thesymbol | denotesthe nuclear spin, Sis
the electron spin, and L isthe electron angular momen-
tum. The Landé factor can be calculated from

FF+1)+JUO+1)-1(1+1)

9= 95 2F(F +1)
(3.10)
_ 1+J(J+1)+S(S+1)—L(L+1)
9 2J(3+1) '

If the spin adiabatically follows the magnetic field, the
force that the magnetic field gradient exerts on an atom
is

Fragn = —0,U,

(3.12)
U=-pnlB = —-gem:ysB.

Thus, depending on the atom’'s magnetic sublevel me
(positive or negative), it is attracted towards or repulsed
from a magnetic field extremum. Unfortunately, static
magnetic field maxima are not possible, so that only
low-field seekers can be trapped in magnetic field min-
ima. These have the disadvantage of not being the ener-
getically lowest state. The spontaneous decay rate out
of those metastable Zeeman statesisonly ~10-° s, but
spin-changing collisions can induce decay and trap
losses. Even in the lowest atomic state the trapped
alkali gases are metastable: In three-body recombina-
tion processes two atoms can form an energetically
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more favorable dimer if a third atom is nearby to take
away the excess energy. Since the event rate for three-
body callisions scales with the third power of the den-
sity, this process becomes dominant at high densities
[82], e.g., for Bose—Einstein condensates.

Dynamic traps based on time-dependent magnetic
fields have been proposed for both low- and strong-
field seekers by Lovelace et al. [83]. The first demon-
stration of a static magnetic trap for neutral atoms[84]
used an anti-Helmholtz coil configuration to produce
an axialy symmetric quadrupole field. The magnetic
field geometry of a spherical quadrupole trap hasalin-
ear spatial dependence and provides the tightest con-
finement for atoms.

The assumption that the spin adiabatically follows
the magnetic field, unfortunately does not hold in all
cases. Especially, near zero magnetic field the Larmor
frequency gem:pgB/A may get smaller than the rate of
change of magnetic field amplitude experienced by the
atom through its motion with velocity v, i.e., vd,B/B.
At thislocation, missing a quantization axis, the atoms
are free to reorient themselves arbitrarily and undergo
so called Majorana spin flip transitions to untrapped
magnetic sublevels. Thisis exactly the case for a qua-
drupole trap. In this trap, atoms are lost due to Mgjo-
rana spin flips as they pass near the trap center due to
the sudden change of the magnetic field. The colder the
atoms are, the more time they spend near the center
“hole,” and the situation is even worse.

The Time-Orbiting-Potential (TOP) trap was
designed to suppress the Majorana loss by adding a
rotating transverse biasfield By, to the quadrupol e trap
(gradient 0, Bqag) [85]. The bias field shifts the “hole”
away from the region where atoms are trapped to adis-
tancery = Byias/ 0, Bquag from the center. The hole rotates
inaso called death circle around the harmonic trap, fast
enough for the atoms to only respond to the time-aver-
aged potential. An aternative approach are |offe-Prit-
chard (IP) type magnetic field configurations. In the
magnetic field minimum the field amplitude does not
vanish, so that Mgorana spin-flip transitions do not
occur. The original IP trap consists of a combination
between a quadrupol e waveguide and a magnetic bottle
[86, 87]. Variations of IP traps include the cloverleaf
trap [88], the baseball trap [7, 89], the loffe bar trap
[90], and the Quadrupole loffe Configuration (QUIC)
trap [91].

Laser cooling in magnetic traps has the advantage
over evaporative cooling (next section), that the heat
dissipation does not rely on the irreversible removal of
hot atoms and does not require high densities and colli-
sion rates. On the other hand, Doppler-cooling in mag-
netic trapsis possible [92], but it meetsits natural limit
at temperatures in the millikelvin range. Raman-cool-
ing and VSCPT are not compatible with magnetic traps.
However, other cooling schemes are possible or will
probably be devel oped in the future. One exampleisthe
idea of gravitational Ssyphus cooling tested by New-
bury et al. [93].
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3.1.4. Evaporative cooling. As we have seen ear-
lier, laser cooling becomes ineffective when the density
of the gasis high. We need another dissipative mecha-
nism to cool atoms confined in magnetic traps. A new
method called evaporative cooling has been proposed
by Hess [94] for spin-polarized hydrogen (H1) and has
been observed by Masuharaet al. [95]. It waslater utilized
for the adkai-metas [75, 85, 96]. A detailed review has
been published by Ketterle and van Druten [97].

Evaporation always occurs when energetic particles
leave a system with finite binding energy, taking away
more than their share in mean energy per particle. We
consider here the case of a magnetic trapping potential
with afinite extension, i.e., the potential has an edge or
a spout through which hot atoms with enough kinetic
energy to reach that region can leave the trap. In the
ideal case, thiswill lead to a complete truncation of the
hot tail of the equilibrium Maxwell-Boltzmann veloc-
ity distribution. If the remaining system finds back to
thermal equilibrium, it will do so at a lower tempera-
ture. The redistribution of kinetic energy among the
atoms, that ultimately leads to rethermalization, hap-
pens through elastic collisions. It takes about three col-
lisions per atom to rethermalize a cloud [89, 98]. The
rate for elastic collisions between trapped atomsis

Yoo = NoOaV+/2 Op°N, (3.12)

where n, isthe peak density, g, isthe elastic scattering

collision cross section, and Vv is the average relative
velocity between two atoms [97]. Obvioudly, the evap-
oration process slows down when the cloud gets colder,
unless the potential edge is lowered so that the hottest
atoms of the colder cloud are evaporated.

By continuously lowering the potential edge while
the atomic cloud is rethermalizing (this procedure is
called forced evaporation), very low temperatures in
the nanokelvin regime can be reached and the phase
space density can be increased by six orders of magni-
tude up to the threshold of Bose-Einstein condensa
tion. Thisis of course only possible by sacrificing many
hot atoms. Even in awell optimized evaporation ramp,
only 1% may reach the condensate stage after about
500 collisions per atom.

Two aspects should be pointed out concerning the
optimization of the evaporation path, i.e., the down-
ramping of the truncation edge. The first aspect is that
indlastic collisions with atoms from the background
vapor limit the trap lifetime. Therefore, the evaporation
needs to be fast, which requires high elastic collision
rates or agood vacuum. There is atrade-off between an
efficiently slow evaporative cooling on one hand and
avoiding the accumulation of trap losses on the other
hand. The second aspect is that the dimensionality of
the evaporation edge determines the efficiency of evap-
orative cooling. The first demonstration of evaporation
inH1 gected hot atoms over asaddle point. The saddle
point constitutes a small region of space away from the
trap origin, and only atoms that have enough kinetic
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energy in one direction E, > U, Can leave the trap.
The evaporation isthen called 1-dimensional (1D). Itis
true, that ergodic mixing due to anharmonicities in the
trapping potential will sooner or later drive all the
atoms through this region, but this effect becomes less
pronounced when the cloud cools down, since the
atoms settle down in the harmonic (and therefore sepa-
rable) region at the bottom of the trapping potential.
This fact has inhibited efficient evaporation in H1
below 120 pK [99].

A second evaporation technigue has been demon-
strated in TOP traps [85]. Asexplained in Section 3.1.3,
it isafeature of TOP trapsto be surrounded by a death-
circlethat gjects the atoms passing through. This death-
circle can act asa 2D evaporation surfaceif itsradiusr
is large enough. Under the influence of gravity the
dimensionality is even reduced to 1D [97]. For small
atomic clouds, typically lessthan 10° atoms, aTOP trap
only needs a moderate death circle radius. But a small
death circleis an obstacle for the creation of Bose con-
densates with large numbers of atoms. For efficient
evaporation, it is necessary for the death circleradiusr
to be greater than 3 to 4 times the rms radius r, of the
trapped atom cloud. On the other hand, it is also neces-
sary that the elastic collision rate be very large. Thisis
usually achieved in part with an adiabatic compression
of the magnetic trapping potential, in which the trap

frequency increases according to w, ~ 0, Byaa/ Bff,ﬁs
Thus, we wish to increase 0, By,q and decrease Byys.

However, this also shrinks the ratio ry/ro ~ Bijas/ By -
For large atom numbers the initial radiusr, tends to be
large and the ratio ry/ry small unless the magnetic field
strengths are very large. Thus, only modest compres-
sion can be achieved before the death circle loss setsin,
and the elastic collision rate must already be large
enough for efficient evaporation at this point. This
means that for large clouds it is not possible to depend
on alarge compression of the density, and that the ini-
tial densities in the trap must not be too far from those
required for efficient evaporation. This is achieved by
efficient optical cooling and compression, and efficient
transfer of the atomsinto the TOP [6].

The most successful evaporation technique imple-
mented so far is based on radiative coupling of trapped
and untrapped states in an energy-selective way and is
termed radiofrequency (rf) evaporation. It originates
from an idea proposed by Pritchard and coworkers
[100], who aready had some experience with rf-spec-
troscopy on magnetically trapped neutral atoms [101].
The spatially dependent Zeeman-splitting is an intrin-
sic feature of magnetic traps. Irradiation of a radiofre-
guency wave with a given frequency couples the
trapped and untrapped Zeeman-substates at a well-
defined distance from the trap origin. This givesriseto
a 3D evaporation surface, where crossing atoms can
undergo Landau—Zener transitions and be expelled
from the trap. The technical advantages of this scheme
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are substantial: The magnetic trapping potential does
not need to be manipulated, and the potential edge can
easily be controlled by the radiofrequency. If the evap-
oration isforced by continuously lowering the radiofre-
guency and if the evaporation path is suitably chosen,
the density will increase and therefore the collision
rate. The rethermalization will speed up and initiate
run-away evaporation. Rf-evaporation wasfirst demon-
strated by Ketterle and coworkers [96].

Ancther cooling mechanism based on collisions is
sympathetic cooling. The technique originally used in
ion traps was later applied to neutral atoms confined in
magnetic traps. The idea consists of bringing the gas
into thermal contact with a cold buffer gas. In some
cases, the buffer gas can be optically or evaporatively
cooled. Buffer gas loading of conservative traps, e.g.,
magnetic traps [102], is an aternative to the transfer
from MOTs. Sympathetic cooling has been used in
magnetic traps to create double condensates [7] (Sec-
tion 4.2.1) and to cool fermions down to the regime of
guantum degeneracy [103] (Section 3.2.3).

3.2. Realization of Bose-Einstein Condensation

In early 1995, several research groups were very
close to the long pursued goal. Several improvements
of the optical trap led to large atom numberstransferred
to the quadrupole magnetic trap, evaporative cooling
had been observed. The first observation of Bose-Ein-
stein condensation in adilute gaswas made at JILA [3]
in rubidium. It was followed by Rice[5] in lithium and
MIT in sodium [4], and later by Han et al. [6] and Hau
et al. [104], and has now been confirmed by more than
twenty groups worldwide. This section will briefly
relate the first three experiments. A remarkable
achievement is the condensation of atomic hydrogen
[99]. Other candidates for BEC are thoroughly investi-
gated, like cesium [81, 105, 106], potassium [107],
helium [108] and neon [109].

3.2.1. BEC in alkalis. The JLA experiment led by
Cornell and Wieman worked with a rubidium vapour
cell dark MOT. Operating at 107 torr it took 300 s to
load 107 atoms. In order to optimize the loading effi-
ciency into amagnetic trap, theMOT gradient and laser
frequency detuning were adjusted and a short pulse of
circularly polarized laser light pumped the atoms in
presence of aweak homogeneous magnetic field defin-
ing the quantization axis into the fully stretched F = 2,
me = 2 Zeeman state. Then, all laser light was switched
off and the quadrupole TOP trap quickly switched on.
The effective time-averaged potential pgB was pan-
cake-shaped with secular frequencies close to w, =

/8w, = 21t x 120 Hz. The TOP trap rotating frequency
Wrop = 21 X 7.5 kHz, was chosen to satisfy 7w, <
hwrop < UgB. The potential was adiabatically com-
pressed by ramping up the quadrupole field gradient
and then reducing therotating biasfield amplitude. This
enhanced the collision rate to about three per second,



678

05r

Optical density

0 120 240 360

— —
el (9}
T T

%

Optical density

o
n

4

120

(=}
Opr
"

240 360

N

w
T

—_
T

Optical density
[\

=}

0 120 240
Position, pm

360

Fig. 4. (@) Timeof-flight absorption pictures above,
(b) dlightly below, and (c) well below the phase transition
(figures taken from [6]).

which was (in view of the 70 s magnetic trap lifetime)
enough to initiate run-away evaporative cooling. At this
stage, the cloud consisted of 4 x 106 atomsat 90 pK tem-
perature and 2 x 10'° cm3 density. Death circle induced
Majorana spin flips and rf-induced Landau-Zener tran-
sitions both acted as an edge to the potential and con-
tributed to evaporative cooling. The rf-scalpel was
ramped down thus skimming off the hot atoms from the
continuously rethermalizing cloud. The phase transi-
tion was crossed with the rf-frequency at 3.6 MHz.
With a 5 G rotating bias field amplitude, this rf-fre-
guency made the trapping potential about 800 kHz
deep. Findly, after an equilibration time of two sec-
onds, the released and ballistically expanded conden-
sate was probed after 40 ms time-of-flight with a circu-
larly polarized laser beam tuned to a cycling transition
(Section 3.3.1). Figure 4 shows typical absorption pic-
turestaken with that method. The signatures of BEC are
(1) abimodal density distribution with a sharp increase

COURTEILLE et al.

in peak density in the center of the cloud, (2) acritical
dependence on the final rf-ramp frequency, and (3) an
anisotropic shape of the central condensed feature. Asdis-
cussed later (Section 4.1), only the BEC wavepacket
remembers the shape of the trap that confined it before
being released.

Of course, the condensed atom number and quality
of the results in general have been largely improved in
subsequent experiments at JILA and in other groups.
E.g., the loading of the optical trap from the back-
ground vapour has been replaced by a Zeeman-dower,
a double MOT or an axicon trap configuration which
permitted faster loading rates at a lower vapour pres-
sure. Other beam and magnetic trap configurations
have been used, and other imaging systems have been
developed. Today, atom numbers higher than 10° can
routinely be condensed in TOP traps. However, the
essential features of the method described above has
been the same for all alkali BEC experiments.

The Rice group led by Hulet opted for lithium [5].
Lithium has a dlightly negative scattering length a =
—-27.3ag, for which only small condensates are
expected to be stable (Section 2.6.2). The Rice group
used a magnetic trap configuration made of permanent
magnets in an arrangement that produces a harmonic
potential with a magnetic field minimum offset by
823 G. Thishasthe advantage of asimple experimental
setup, but at the price of flexibility. The magnetic trap
is directly loaded from a Zeeman-dlower. A 1072 torr
background pressure corresponding to 10 min magnetic
trap lifetime allows 1000 collisions per lifetime with an
elastic scattering cross section of 0 = 5 x 10 cm?.
After typically 5 min evaporation, asample of 10° atoms
reaches temperatures close to 300 nK. Because the
magnetic field cannot be switched off, in situ imaging
of the dense condensed cloud is necessary. Near-reso-
nant imaging of the opticaly thick cloud introduces
lensing effects, which make the interpretation of the
recorded images difficult [110] and first led to errone-
ous claims about the numbers of condensed atoms [5].
L ater, the use of phase-contrast imaging which exploits
the birefringence of the atoms in the strong magnetic
field offset (Section 3.3.2) resolved this problem and
resulted in the observation of limited atom numbers of
about 1400 atoms. Subsequent experiments monitored
the dynamics of collective collapse of lithium BECs as
soon as a critical atomnumber is surpassed [111].

TheMIT group led by Ketterle used sodium. Instead

of using a vapour cell, they loaded their MOT from a
Zeeman slower. Apart from this, their approach was
similar to the JILA experiment, except for the method
used for suppressing the Majorana spin flips. In their
first experiment they used a far-off resonant optical
beam, A = 514 nm and | = 2 x 10° W/cn?, causing
7 MHz light shift to repel the atoms from the center of
their quadrupole trap and thus plug its hole [4]. They
condensed N =5 x 10° atomsat T = 2 uK and densities
around n = 4 x 10* cm3. In amodified setup, the MIT
LASER PHYSICS Vol 11
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group replaced the quadrupol e trap by acloverleaf trap,
which has a loffe-Pritchard type potential [88] and is
free of the spin-flip problem (Section 3.1.3). In this
trap, Mewes et al. produced condensates of N = 5 x
10° atoms. In contrast to the pancake-shaped fixed
aspect ratio of TOP traps, cloverleaf traps are cigar-
shaped and have a large tunable aspect ratio, which
proved useful for arange of subsequent experiments.

3.2.2. BEC in hydrogen. Hydrogen is a very inter-
esting element to study BEC, because its small scatter-
ing length, a; = 1.23ag, makes it an almost idea gas.
This has the advantage of small three-body losses
allowing dense condensates. The small mass resultsin
a high critical temperature. Its ssmple level structure
allows precise calculations of the interaction potentials
based on first principles, which may, in this way, be
tested by experiments. The narrow 1.3 Hz wide 1S-2S
(Lyman-a) transition at 121.56 nm might be a good
candidate for frequency standards in atomic fountains
[112]. Narrow lasers with 0.6 Hz emission bandwidth,
that would be able to exploit this narrow reference line
have aready been constructed in other wavelength
regions[113].

In 1978 Greytak and Kleppner started intensive
effortsto form BECs in dilute hydrogen gases. Twenty
years later they finally reached their goal [99]. The
sequences of this difficult experiment recapitulate the
advances in the historical development towards higher
densities and lower temperatures. In this experiment,
large numbers of hydrogen molecules were dissociated
in a cryogenic discharge, spinpolarized and trapped in
a magnetic loffe-Pritchard potential and confined in a
cell with 120 mK cold liquid “He coated walls. The
atoms thermalized by collisions with the walls until
they settled down in the 500 mK deep trap and ther-
mally disconnected from the wall. Because cryogenic
cooling islimited to 40 mK, a new technique had to be
invented, namely evaporative cooling [94] over a sad-
dle point of the potential. The evaporation could be
forced by lowering the trapping potential down to 1.1
mK. However, the evaporation surface is one-dimen-
sional (Section 3.1.4) and becomes increasingly ineffi-
cient at temperatures below 120 pK, because rether-
malizing collisions are rare due to the small scattering
length. The problem was solved by applying the tech-
nique of radiofrequency evaporation, which had been
developed for the alkali atoms and yields three-dimen-
sional evaporation surfaces. Unfortunately, radiofre-
guency evaporation requires low-field seeking atoms
which have the disadvantage of being in excited spin
states and therefore metastable with respect to dipolar
spinflips.

The phase transition was finally crossed at 50 pK
temperature and atomic densities of about 5 x 10% cm=,
The number of condensed atoms was 10°, correspond-
ing to a limited condensed fraction of below 10%. At
higher condensed fractions and densities the |osses due
to dipolar heating overrule the gain from evaporative
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cooling of thethermal cloud [114], which israther poor
because of the small scattering length. The needle-
shaped condensed cloud had 15 um radia and 5 mm
axial extension.

The atomic sample was probed by ultra-high resolu-
tion two-photon Raman spectroscopy on the forbidden
1S-2S transition. The fluorescence photons could be
observed by Stark-quenching the 2S level via the
rapidly decaying 2P level. The spectrum shown in
Fig. 5 consists of a Doppler-sensitive and a Doppler-
free part which result from photons being absorbed
from the same laser beam or from counterpropagating
beams, respectively. The Doppler-free narrow peak is
red-shifted by cold collisions by an amount Av;g »5 =

-3.8 Hz cm® x n, and its width of a few kilo-Hertz is
mainly due to transit time broadening of the atoms fly-
ing through the small 50 um waist of the laser beam.
The density dependence of the pressure shift is useful
for studying the density distribution of the cloud. The
Doppler-sensitive broad peak is blue-shifted by
6.7 MHz, i.e., twice the recoil-energy. It represents an
in situ measurement of the atomic momentum distribu-
tion and is in this respect complementary to imaging
techniques that either measure the spatial distributionin-
situ (Section 3.3.2) or the momentum distribution after a
time-of-flight (Section 3.3.1).

The condensate leaves its imprints on the two-pho-
ton spectrum. The Doppler-free peak has a shoulder,
that is red-shifted by —-0.9 MHz and originates from a
region in the trap where the density is significantly
higher. Thisis a signature of BEC. The intrinsic width
of the shoulder is determined by the position-momen-
tum uncertainty, but is overruled by the broadening due
to the very inhomogeneous density distribution of the
BEC. The broad Doppler-sensitive peak devel ops anar-
row structure that is qualitatively similar to the one of
the Doppler-free peak.

3.2.3. Fermions. Atoms are either bosons or fermi-
ons depending on whether their spin isinteger or half-
integer. At high phase-space densities the atoms have to
sort out how they will organize their coexistence.
Bosons encourage each other to occupy the same
phase-space cell, in contrast to the reluctant fermions
which follow the Pauli exclusion principle. The differ-
ent behavior isdescribed by different quantum statistics
which settle how the phase-space (i.e., the available
energy levels) has to be populated by the atoms. The
Bose-Einstein distribution holds for bosons, the
Fermi—Dirac distribution for fermions and both asymp-
totically approach the Boltzmann distribution at high
temperatures. We have seen that bosons undergo a
phase transition and all condense in the ground state as
the temperature is lowered. On the other hand, the fer-
mions must organize their phase space so that their
energy levels are organized like a ladder. This has
observable consequences at low temperatures. (1) The
internal energy of afermionic gasisalittle higher than
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expected according to classical statistics, because the
atoms drive each other out of the lowest energy levels.
(2) In a confining trap, the cloud resists compression,
its spatial density distribution is shaped by atoms push-
ing each other out of the trap center, where the potential
energy is lower. (3) The collision rate is strongly sup-
pressed, because the density cannot increase beyond a
certain limit. This last point makes ultracold Fermi
gases interesting for frequency standard applications,
because of the absence of pressure shifts.

It is, of course, very interesting to experimentally
confirm the impact of gquantum statistics on a cold
Fermi gas. There are various fermions among the alkali
isotopes (see Table 2). DeMarco and Jin [103] carried
out experiments on potassium. They loaded amagnetic
cloverleaf trap fromaMOT with 150 uK hot atomsand
initiated evaporative cooling. The prablem with evapo-
rative cooling of fermions is that at ultralow tempera-
tures s-wave collisons between the spin-polarized
identical fermions dominate, and those are forbidden
by Pauli’'s exclusion law. Because s-wave collisions
between distinguishable particles are possible,
DeMarco and Jin could circumvent this problem by
dividing the potassium cloud into two different internal
energy states and simultaneously cooling them. The
two energy states used were the |F, me[= |9/2, 7/2(0and
the [9/2, 9/200Zeeman sublevels of the ground state.
Inside the magnetic trapping field the Zeeman states are
split. In order to maintain a 50% ratio during forced
evaporation, the evaporation edge of both Zeeman
states had to be controlled and ramped down separately
and simultaneously by two microwave frequencies
tuned between each of the Zeeman states and an
untrapped level of the F = 7/2 hyperfine state.

COURTEILLE et al.

DeMarco and Jin cooled a two-component Fermi
gas of 7 x 10° potassium atoms down to 300 nK, which
corresponded to 60% of the atoms populating energy
levels below the Fermi temperature T =

fi kg (600,00F N)°. Then they selectively removed the
[7/20Catoms, took time-of-flight absorption pictures and
analyzed the momentum distribution. The onset of the
Fermi-statistical regime was observed as a barrier to
evaporative cooling at temperatures lower than 0.5T
and also left itsimprint on the momentum distribution.
The shape of the distribution deviated from the Gauss-
ian expected for classical gases, and the analysis of the
second moment of the distribution (which is indepen-
dent of any assumption concerning the exact statistical
distribution) showed a higher total energy than classi-
cally expected.

A possible next step could be the attempt of induc-
ing Cooper-pairing of fermions. Cooper-pairs are
bosons and it might be possible to cool them down to a
BEC phase transition. This effect is known from super-
conductivity, where Bose-condensed Cooper-paired
electrons move through a metal without friction. The
superfluidity of fermionic *He is also explained by
Cooper-pairing. In dilute gases, however, this is most
likely a very difficult task, due to the lack of efficient
cooling mechanism at such low temperatures.

Table 2 liststhe scattering lengths and transition fre-
guencies for some bosonic and fermionic alkalis. The
scattering lengths are either measured or calculated.
Many cal culations on scattering lengths and interaction
potentials were carried out by Verhaar, Julienne,
Greene, Stwalley and their respective coworkers.

Table 2. Nuclear spin, scattering lengths and transition parameters for various isotopes. The fifth, sixth and seventh column
give the linewidth and the transition frequencies of the D1 and D2 lines, where applicable. The last column gives the ground

state hyperfine splitting, where applicable

Element | Qmixed Qyriplett Yool 2Tt D1 D2 Vied Syl
[ag] [ag] [MHZ] [em™] [cm™] [MHZ]

4 12 1.23 99.58 82264 82264
°H 1 -6.8
6Li 1 —2160 5.92 14901 14901 228.2
Li 32 10 -27.3 803.5
ZNa 32 52 85 10.01 16956 16973 1771.6
39K 32 118 81.1 461.7
40K 4 158 1.7 6.09 12985 13043 -1285.8
4K 32 225 286 254.0
85Rb 5/2 —450 -363 5.98 12579 12816 3035.7
8Rb 32 105 109.3 6834.7
133¢g 7/2 240 -350 5.18 11182 11737 9192.6
135Cs 712 163 138
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3.3. Imaging Techniques

All methods of extracting information from a con-
densate used up to now are based onitsinteraction with
light. However, the methods differ in the kind of infor-
mation they yield. A detailed discussion can be found
in reference [115]. We will restrict ourselves here to
tracing the essential points.

We can either use frequency-domain high-resolu-
tion Doppl er-sensitive Raman-spectroscopy [99] or just
take pictures of the spatial density distribution of the
atomic sample. Pictures are taken by irradiating with
the light of a probe beam and either imaging the fluo-
rescence of the atoms or the imprint of the atomic cloud
on the intensity distribution of the probe beam. The flu-
orescence method does not reproduce the density distri-
bution of optically dense clouds and is afflicted with a
small light collection angle. The imprint method can be
absorptive or dispersive. Absorptive imaging destroys
the sample and only works for optically thin clouds. It
is therefore commonly used in Time-of-Flight (TOF)
schemes on ballistically expanded clouds. Dispersive
imaging usualy preserves the sample. It works for
thick clouds and is commonly used in situ on trapped
samples with far-off resonant probe light. Several
methods of dispersiveimaging have been applied, nota-
bly dark-ground imaging, phase-contrast imaging and
polarization-contrast imaging. It isworth noticing, that
in order to get specific informations, one may manipu-
late the sample before imaging it. E.g., one can convert
momentum into coordinate information by ballistic
expansion or one can let a condensate interfere with a
reference condensate and extract information about the
matter-wave phase distribution.

3.3.1. Time-of-flight imaging. Time-of-flight (TOF)
absorption images are taken after nonadiabatic removal
of the trapping potential within a time much shorter

than the trap oscillation period, tgicn << w{ép ,whichis
typically on the order of a millisecond. After a time
long enough to allow the initial velocity distribution of
the trapped BEC to convert into aspatial distribution of
the expanded cloud that is large enough to neglect the
initial spatial distribution, the cloud isirradiated with a
weak resonant probe beam. The shadow imprinted by
the cloud into the probe beam is imaged onto a CCD
camera. Severa reasons make TOF imaging well-
suited for probing BECs. (1) Thetotal number of atoms
can be derived from the missing photons in the probe
beam, (2) the velocity distribution directly reflects the
temperature, (3) the expanded cloud is optically thin
enough, not to saturate the probe beam shadow even if
the probe frequency is on resonance, (4) the expanded
cloud is large enough to be easily resolved with stan-
dard imaging systems and even to reveal structural
details. E.g., the shapes and aspect ratios of the con-
densed and thermal parts are different and permit their
visual separation. On the other hand, it isimportant for
TOF imaging to guarantee the sudden and free expan-
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sion of the cloud, which is a technically demanding
task.

The density of the therma part ny(r) of an ideal
trapped Bose gas has been estimated in the semiclassi-
cal limit (Section 2.4) by Eq. (2.30), while its momen-
tum distribution ny,(p) follows Eq. (2.31). Switching

off the trap suddenly removes all potential energy.
While the gas ballistically expands, the self-interaction
energy is adiabatically converted into kinetic energy

. - -1
[116]. If we wait sufficiently long, t > wy,,, the

expanded spatial density distribution nyoe(r, t) just traces
the original momentum distribution,

Nroe(r, 1) = Mt R, (mr/t)
(3.13)

B(u—mr 22k Tt?)

= (AgaWyapt) “Ga2(€ ).

Inthefar wings, mr?/2t2 > , the density of the thermal
cloud approaches a Gaussian distribution,

N —r%2r%

— , (3.14)
(21)%%r]

Nroe(r, t) =

2
where we used kgT = mr;,/t> and N =

(ke /%0y o) ’exp(WkeT). The quantity (2r)32r; . is
sometimes called effective volume. If we assume ther-
mal equilibrium between the thermal and condensed
fraction, the temperature can easily be extracted from
the far wings of the Gaussian (3.14), which are beyond
the spatia extension of the BEC wavefunction. The
generalization of the distribution (3.14) to nonisotropic
potentialsis straightforward. The ideal-gas approxima-
tion isvalid, because the thermal fractionisvery dilute
compared to the condensed fraction.

While the thermal atomic cloud constitutes a statis-
tical ensemble, the condensed part isdescribed by asin-
gle complex wavefunction Yy(r) that isasolution of the
Gross—Pitaevskii equation (2.45). Let us assume a har-
monic trapping potentia Uy,,(r). In the absence of
interactions, the ground state wavefunction is a Gauss-
ian, and it stays a Gaussian during ballistic expansion
athough it changes its size and aspect ratio. In most
experiments, however, the interactions are strong,
glWo(r, P > Ayg,. In this so-called Thomas—Fermi
limit, we can neglect the kinetic energy term in
Eq. (2.45). The solution is a parabolically shaped den-
sity distribution, which preserves its shape during bal-
listic expansion [117] (Section 4.1). The chemica
potential 1 can be estimated in the Thomas—Fermi limit
from the width of the expanded condensate p =

2 40
mr s/t

In summary, absorptive TOF imaging permits the
unambiguous measurement of N, N, T, and i and the
derivation of T, from N, = g5(1) (kg Te/wy,4p)°. However,
we dtill have to establish the relationship between the
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Fig. 5. Two-photon absorption spectrum of hydrogen. The
narrow Doppler-free peak at negative detunings and the
broad Doppler-sensitive peak at positive detunings acquire
characteristic shoulders when a BEC is present (courtesy
of [99]).

expanded cloud density (3.14) and the absorption pro-
file that the cloud imprints into the probe beam.

Optical density. The influence of the atoms on the
probe beam is described by the complex refraction
index n,¢, which can be linked to the optical cross sec-
tion o(A) and easily be calculated from the optical
Bloch equations for a two-level atom in the rotating-
wave approximation [118]:

~1+NOACA)G 240
Ne =1+ TE -5 (3.15)

If the atomic cloud is small and dilute, the amplitude of
the probe beam islocally attenuated and phase shifted:

2ni
A

The absorption coefficient or optical density a is the

E = Eoexp[ I(nref—l)dz} = E,e“%e®. (3.16)

product of the column density [n(r)dz and the optical

cross section, where the integration is over the imaging
direction. Close to resonance, the interaction is well
described by the Lambert-Beer law, | = 1,6, where

a(x,y) = oojn(r)dz. (3.17)

The CCD camera actually records the intensity distri-
bution of the probe beam I (%, y) that went through the
atomic cloud. Inhomogeneitiesin the intensity distribu-
tion can be compensated by taking a reference picture
without atoms and calculating 1 (X, y)/ .

3.3.2. In situ imaging. TOF imaging is a one-shot
measurement and destroys the sample. As mentioned
earlier, absorptive in-situ imaging is accompanied by
the problem of large local phase shifts of the probing
beam due to the optical thickness of the cloud. Mea-
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surements have been carried out in this regime [104],
but they have only yielded reliable values at the surface
of the trapped cloud, where the density is small. The
problem can be circumvented by dispersive imaging,
which additionally possesses several other advantages.

If we increase the detuning, the dispersion coeffi-
cient 6 defined in Eq. (3.16) decreases, but the absorp-
tion a decreasesfaster, because & = aA/T. Very far from
resonance, the heating due to absorption and spontane-
ous emission is insignificant and the BEC will not be
destroyed. The probe beam al so phase-shiftsthe matter-
wave and should have uniform intensity distribution in
order to prevent the formation of matter-wave phase
gradients. Thelocal phase shift in the probe beam cross
section can be turned into an intensity profile using the
method of dark ground imaging or phase contrast
imaging [115].

Andrews et al. have used dispersive, nondestructive
imaging techniques [119], that alows taking up to
20 images of the trapped BEC without significantly
perturbing it. This permits to watch the condensate
dynamics, e.g., the response to trap perturbations, on-
line. Bradley et al. [110] took phase-contrast images
which exploit the birefringence of the atoms in the
strong magnetic field offset of their trap. Confined in a
trap, the thermal and condensed fractions of acloud are
not well separated. Therefore, in situ imaging is not
well suited for determining the thermodynamic quanti-
ties a the phase transition. However, a low tempera
tures, where most atoms are condensed, N, and 1 can be
measured from the size and shape of the observed cloud.
A technical disadvantage of in situimaging isthe need of
avery high resolution imaging system allowing to map
the tiny sample. The size of some smadll structuresin the
condensate wavefunction, e.g., vortices and solitons,
may even be beyond the diffraction limit.

3.4. Measurements on Condensate Equilibrium
Thermodynamics

The measurement of the temperature dependence of
thermodynamical quantities at the phase transition
reveals important information about deviations from
the ideal gas behavior due to particle interaction, finite
size effects and spatial confinement (Chapter 2). Dilute
gases are amost ideal systems, the nonideal features
are quite small. Therefore they present a better oppor-
tunity to study the thermodynamics of Bose phase tran-
sitions than other systems, e.g., “He where the con-
densed fraction N./N is difficult to measure and the
critical temperature T, is difficult to calculate.

The time-of-flight absorption pictures yield a num-
ber of informations. One can extract the total number of
atoms N from the missing photons in the probe beam
shadow. Two independent two-dimensional Gaussians
arefit to the thermal and the condensed part, thus allow-
ing the determination of N.. The temperature T of the
sample can be estimated by fitting Gaussians to the
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thermal cloud (outer wings of thetotal TOF density dis-
tribution) assuming thermal equilibrium between ther-
mal and condensed clouds and a Maxwell-Boltzmann
velocity distribution for the thermal cloud. The scaling
temperature T, is chosen to be the critical temperature
(2.23) for anideal harmonically trapped Bose gasin the
thermodynamic limit (Table 1). Various experiments
[6,120] verified that the condensed fraction N./N
reproduces well the theoretical dependence (2.22)
expected for idea Bose gases in the thermodynamic
limit (Table 1). This means, that the gasis so ideal, that
any nonideal gas feature is difficult to be quantitatively
measured against the experimental shot-to-shot noise
and calibration uncertainties.

However, the measurement of other thermodynamic
guantities like the energy and the heat capacity
[103, 120] displayed significant deviations from ideal
gas behavior and emergence of interaction effects. The
same ballistic expansion data set used for determining
the condensed fraction can be fit by an arbitrary model-
independent density distribution, n(k) if we only make
sure, that its zeroth moment is normalized to the atom

number N = [ A(k)d’k , where k = mr/fityo. Depend-

ing on the chasen distribution, the quality of the fit may
be better or worse, but in any case, the second moment

gives the kinetic energy, U = IV Ekmﬁ(k)dsk, where

Euir, = /%k?/2m. For trapped ideal gases the viria theo-
rem ensures E = E, + E,x = 2Ey,, however for real
gases the repulsive meanfield energy adds up, E =
Exin + Epot + Esar - The sudden switch-off of the trapping
potential nonadiabatically removesthe potential energy
Epot- The kinetic and the self energy of the BEC are
converted into pure kinetic energy during the ballistic
expansion. This energy, E, + Es;, (Sometimes called
release energy) ismeasured by TOF measurements. We
can expect the temperature dependence of the mea-
sured release energy to correspond to the dependence
of the total energy. The heat capacity derived from both
guantities should give the same results. Despite the
experimental noise, the release energy measurement
data clearly show achange of slope at the phase transi-
tion. Figure 6 shows measurements of the kinetic
energy after 10 ms ballistic expansion.

The measurement was strictly model-independent
and contained no assumptions on the quantum statisti-
cal nature of the particles or on particle interactions. It
would be interesting to compare the results to theories
in various limits, i.e., the ideal gas in the thermody-
namic limit or by taking into account finite number
effects [39] and particle interactions. However, the
accuracy of the experiment does not permit quantitative
conclusions. It only shows, that the effect of mean-field
repulsionistoincreasethe energy and to reducethedis-
continuity of the temperature-derivative of the energy
at the phase transition.
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Fig. 6. Measurement of the scaled release energy per parti-
cle versus reduced temperature at the phase transition.
Straight lineisideal Boltzmann gas, dashed linefinite num-
ber ideal Bose gas [39] and solid curved line fit to the data
(courtesy of [120]).

CHAPTER 4.
EXPERIMENTS ON CONDENSATE DYNAMICS

The experimental achievement of Bose-Einstein
condensation in dilute gases triggered a wealth of theo-
retical and experimental work on the characteristics
and dynamics of Bose-condensed gases. The early
work focused on the equilibrium thermodynamics of
condensates (discussed in Section 3.4) and their
dynamic response to perturbations, especially when
they are near the critical point. Since then, breathtaking
progress has advanced the field of investigations:
Exotic states like vortices, solitons and multispecies
condensates have been created, collision resonances
have been found, experiments on the interaction of
BEC with light have been carried out, and various kinds
of atom lasers have been constructed. Chapters 4 to 6
are devoted to giving a brief overview and résumé of
recent experiments involving Bose-Einstein conden-
sates. In the present chapter, we focus on experiments
on the dynamics of condensates and of binary mixtures
of condensates.

4.1. Wavepacket Dynamics

The dynamics of Bose-Einstein condensatesis gen-
erally studied by observing the modification of the
shape of the condensate wavepacket in response to
time-dependent variations of the trapping potential.
The simplest time-dependence imaginable is the sud-
den removal of the trapping potential. Indeed, the first
experiment performed on BECs was the study of free
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Fig. 7. Temporal evolution of the aspect ratio of suddenly
released BECs. The cloverleaf trap had the trapping fre-
quencies wy = 211 X248 Hz and w, = 211 x16 Hz (courtesy
of [115]).

expansion [3] (Section 3.3.1). Contrary to the thermal
phase which expandsisotropically independently of the
shape of thetrap, the shape of the expanded condensate
reflects the trap geometry. The condensed ground state
is described by a single macroscopic quantum mechan-
ical wavepacket and expands predominantly into those
dimensions originally constrained by thetrap. E.g., the
BEC aspect ratio reverses during free expansion
[90, 117]. Additionally, as the condensate is much
denser than the thermal cloud, the condensate self-
interaction is much stronger. This repels the atoms and
enforces the dynamical evolution described above. Fig-
ure 7 shows the evolution of the aspect ratio of a
released sodium condensate.

The time-dependence of the trapping potential may
also be an oscillatory or pulsed small perturbation, e.g.,
a tiny modification of the magnetic trapping fields, a
pulsed local anisotropy induced by the dipole force of
far-detuned laser beams, a manipulation of the conden-
sate self-interaction or density oscillations induced by
light coupling to internal or motional degrees of free-
dom. We will return to these techniques in Section 4.3.

4.2. Multicomponent Condensates

4.2.1. Double species condensates in 8Rb. Mix-
tures of Bose condensatesin different internal statesare
expected to suffer from rel axation due to spin exchange
processes during mixed collisions. Indeed, a collision
may scatter atoms into untrapped states or else grant
sufficient kinetic energy to gject the atoms from the
trap. In the case of rubidium, the fortuitous coincidence
between the singlet and triplet ground state scattering
lengths reduces the collisional losses for any mixture of
spin states. In particular, it allows the coexistence of
BECsin the low-field seeking states |F, m:[E= |2, 2Cand
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[1, —=100[121]. Such double-species condensates have
been observed in experiment [7]. When the magnetic
trap is loaded with atoms in both hyperfine states, the
|1, —1Ccloud being less severely confined, extends to
larger radii and thus experiences larger magnetic trap-
ping fields. During forced radiofrequency evaporation
hot |1, —10atoms see a lower potential edge than |2, 201
atomsand are evaporated faster. If therate of rethermal -
izing elastic interspecies collisions is large enough, the
[2, 200cloud is cooled sympatheticaly and simulta-
neously with the |1, —10cloud. Under the influence of
gravity |1, —1Catoms sag further down into the trapping
field than |2, 2Catoms, but the displacement istypically
smaller than the size of the condensates. Separate imag-
ing of the two BEC components therefore requires
appropriate hyperfine-pumping and probing cycles in
order to discriminate the two hyperfine states [7].

An aternative method to create two-component
BECs has been demonstrated by Matthews et al. [122].
They irradiated a |1, -1 [BEC with amicrowave-radiof-
reguency two-photon radiation pulse tuned to the |2, 10J
state, Wygo/ 2T =6.8 GHz and w4,/ 21T =2 MHz. With
600 Hz Rabi-frequency, which is much faster than the
secular frequencies of the (uncompressed) trap,
Wyap/ 211 =100 Hz, they were able to suddenly transfer
nearly 100% of the lower state population to the excited
[2, 10state. By transferring only part of the population,
they could suddenly spatially mix the two BEC species
and study the complicated nonlinear dynamics of spa-
tial reorganization and component separation [123].
The influence of gravity on the TOP trap makes it pos-
sible to control the relative vertical displacement of the
|1, —1CBand |2, 10ktates by judiciously choosing the val-
uesfor the trapping field strengths and the TOP rotating
frequency [124] and thus alows to realize a consider-
able overlap region of the two BEC species. The repro-
ducibility of the experimental conditions were good
enough to trace the dynamical evolution with destructive
time-of -flight imaging by repeating the whole procedure
of creating and manipulating the sample. The dynamics
isessentially governed by theratios of scattering lengths
between the different components, which have been
determined to beay _y1: @y, _ypp, 10- Ap, 10= 1.03: 1: 0.97

[122, 123]. Because ay _ypp, 1 A/, 118, 10= 1.0005> 1,

the components weakly repel each other. The |1, —10
cloud has a dlightly positive buoyancy with respect to

the |2, 1cloud.

The coherent coupling of two distinguishable BECs
occupying the same region of space has proven auseful
tool for several important experiments. The observation
of compression oscillations induced by the sudden
transfer between the hyperfine states (Section 4.3.1),
the creation of vortices in double condensate systems
(Section 4.3.4) and the realization of an internal state
BEC interferometer (Section 5.3.1).

4.2.2. Spinor condensatesin 2°Na. In order to cre-
ate a spatia overlap of condensatesin different internal
LASER PHYSICS  Vol. 11
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states, it is necessary for the atoms to be confined in a
common trap and not to suffer from spin relaxation pro-
cesses. Pure dipole-force optica traps, eg., red-
detuned far-off resonance traps (FORT) are not sensi-
tive to the Zeeman state of the atoms. Therefore, they
can trap high field seeking states which cannot be con-
fined in magnetic traps, or even mixtures of atoms
being in all Zeeman substates of a hyperfine level. Fur-
thermore, they avoid (spatially inhomogeneous) Zee-
man shifts. While attemptsto directly produce BECsin
optical traps have not been successful yet, |1, —10
sodium condensates have been loaded from amagnetic
trap into aFORT [78]. Dueto the low kinetic energy of
BECs, the optical trap can be made very shallow, so
that low power far-detuned lasers may be used. In their
experiment, Stamper-Kurn et al. [ 78] needed only afew
milliwatts of |aser power at 985 nm wavel ength focused
down to 6 pum waist creating a few microkelvin deep
potential to reach trapping lifetimes on the order of
10 s. On the other hand, dipole traps are an order of

magnitude steeper than magnetic traps, (I)t,ap /12 =
40-400 Hz. Consequently, very high densities between
n=3x 10" and 3 x 10% cm3, mainly limited by three-
body recombination, can be reached.

In a subsequent experiment, Stenger et al. [8] lifted
the Zeeman degeneracy by application of aweak mag-
netic field and coupled the |1, —1[ktate to the other Zee-
man states |1, OUand |1, 1[0by irradiation of resonant
radiofrequency. The population could be completely or
partialy transferred between the states. The resulting
three component BEC quantum field is described by a
spinor. Several interesting features of the dynamics of
spinor BECs have already been observed, e.g., the for-
mation of spin domains, the miscihility of the |1, 1Cand
|1, —10Bnd the immiscibility of the |1, £1CBnd |1, OCthe
antiferromagnetic behavior of the spin-dependent
atomic interaction [8], the metastability of spin
domains against very small (0.1 nK) energy barriers
[125], and quantum tunneling across spin domains
[126] (Section 5.3.2). A review of the experiments on
spinor condensates can be found in [127]. Spinor BECs
are also interesting candidates for studies of nonlinear
four-wave mixing processes [28, 128] (Section 5.4.5).

4.3. Collective Excitations

4.3.1. Elementary excitations. Elementary excita-
tions (also called quasiparticles or normal modes) of
the Bose-Einstein condensate are solutions of the lin-
earized Gross—Pitaevskii equation. The coherent exci-
tation of many quasi particles|eadsto collective oscilla-
tions or density modulations (also called sound) of the
trapped atomic cloud. Technically, the excitations are
generated in response to small time-dependent pertur-
bations of the trapping potential. There are various pro-
cedures and consequently various types of excitations.
Thefirst experiments have been performed by modul at-
ing the trapping potentia [129, 130] and resulted in the
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observation of center-of-mass oscillations (also called
dloshing modes) and shape oscillations. The frequen-
cies of those excitations agreed well with theoretical
calculations [131-133]. The oscillations were damped
by interactions between the collective mode and ther-
mal excitations. The temperature dependence of the
damping has been experimentally studied by Jin et al.
[134].

At JILA, microwave-radiofrequency double-reso-
nance transitions have been used to suddenly transfer a
8’Rb condensate from the |1, —1Cinto the |2, 2Cinternal
atomic state. This state has the same magnetic moment,
but a slightly different scattering length, ay _1# ap 1
and therefore a different mean-field energy gn, =
ATth?ay, /M, where n is the peak density of the con-
densed cloud. The wavefunction immediately starts to
adjust its shapeto fit into the modified environment and
commences oscillating. These damped compression
oscillations have been recorded (Fig. 8) and by compar-
ison to atheoretical model permitted the determination
of theratio of scattering lengths of the two states [122]
(Section 4.2.1).

The range of excitations accessible by modulating
the magnetic trapping fields is limited. Sophisticated
engineering of the perturbation is required to excite
more complicated excitations like higher multipolar
order surface oscillations [135]. Focused far-off reso-
nant laser beams are a useful tool to push around the
atoms inside a BEC. They have aso been used to
observe the propagation of sound pulses by generating
a short small local density perturbation and tracing its
way through the condensate [77]. The tempora behav-
ior of excitations is best studied by taking a rapid
sequence of nondestructive images (Section 3.3.2).

The nature of the excitations profoundly dependson
their de Broglie wavelengths k= = (%/2mw,)¥? com-
pared to three characteristic lengths. Those are the
mean free path for quasi-particles |y, = (NKog)™, the
size of the ground state of the trapping potential a,, =
(/MO »,)2 and the healing length

¢ = 1/,/8man,. (4.1

Here a = 53a; is the sodium s-wave scattering length
for the F = 1, me = -1 state, the cross section for elastic
collisionsis oy = 8ma?. Typica experimental valuesfor
a sodium condensate are Ay, = h 100 Hz and gn, =
h 7 kHz, the characteristic lengths are roughly on the
order of | ¢, =100 um, &y, =2 um, and & =0.2 um. The
mean free path marks the boundary between the hydro-
dynamic regime, k™ > |, and the collisionless
regime (in the sense of quasiparticle collisions), k= <
| ip- Thetrap size delimitsthe regime of discrete collec-
tive modes, k™ = &y, from the regime of pulsed local-
ized excitations, k™ < a,,,. The healing length, finally,
sets the boundary between the regimes of phonon-like
excitations, k=t > &, and particle-like excitations, k=t < €.
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Fig. 8. Compression oscillationsin experiment (dots) and theory (solid line) along theradial and axial directions (courtesy of [122]).

Thetrap manipulation methods mentioned so far are
restricted to the collisionless regimes of discrete collec-
tive modes and pul sed localized excitations. The hydro-
dynamic regime of low energy excitations has barely
been approached in experiments [136], and the oppo-
site regime of high energy localized excitations, k* <<
ayap, Nas been investigated employing the newly devel-
oped method of Bragg spectroscopy [137, 138]. This
technique allows to probe excitations over avery large
range of frequencies. It is particularly well suited for
high frequencies and therefore provides a useful tool to
probe the boundary between the regimes of phonon and
particle-like excitations. We will return to thisin Sec-
tion 5.4.2. The hierarchy of length scales formed by the
various regimes of collective excitations and the exper-
imental method to produce them are summarized in
Table 3.

4.3.2. Noncirculating topological modes. Topo-
logical modes are stationary solutions of the Gross—
Pitaevskii equation (2.45), that are not the ground-state.
There have been some proposal s on the creation of such
non-groundstate Bose condensates [139], and an anti-
symmetric dipole topologica mode has recently been
created in experiment. Williams et al. [140, 141] used a
coherently coupled double-species condensate. The
total order parameter for such asystem isatwo-dimen-

sional spinor W(r, t) = (Y, 15 Yp, 10- Wemay also view
the spinor field as a spatialy varying Bloch vector
describing the local internal coherence and inversion of
the two-level atomsthat form the BEC [141],

. E qJE.,—ldIJE, 10 E
W(r,t) = E Wn,aWp 10 E
0|We 14"~ Wy d’0

The gravitation, whose direction is assumed to coincide
with the symmetry axis of the TOP trap, modifies the
magnetic trapping potential and displaces the trapped
|1, —10and |2, 1C0clouds vertically from one another by
a tunable amount. When coupling the states with a
microwave-radiofrequency two-photon radiation, the
axia displacement makes the generalized Rabi-fre-

quency position-dependent, G(z) = +/Q*+ A(2)°. The
effect of theinhomogeneous coupling strength isanon-
uniform precession and nutation speed of the loca
Bloch vector and consequently a spatial modulation of
theinversion, which comes down to generating a differ-
entia torque on each of the single-component wave-
functions. The torque corresponds to a matter-wave
phase shift and ultimately reaches a point, where the
matter-wave phase twist is 21t across the condensate

(4.2

Table 3. Characteristic length scales for elementary excitations

Regime Kt Method
Hydrodynamic >l Large BECs, high temperatures
Collisionless <lnp Trap modulation
Collective discrete modes =8y ap Trap modulation, standing soundwave
Pulsed localized modes <ayap Dipole force laser beam, propagating soundwave
Photon-like >¢ Bragg scattering
Free particle-like <¢ Bragg scattering

LASER PHYSICS Vol.11 No.6 2001
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Fig. 9. Measured (upper curve) and calculated (lower curve) Rabi oscillations of the space-integrated fractional population of the

lower hyperfine state (courtesy of [142]).

aong the zaxis. This state is the dipole topological
mode. Applying the torque furthermore untwists the
phase winding until the condensate finds back to its
original state.

Inthe JILA experiments[141, 142], the time-evolu-
tion of the local inversion [third component of the
Bloch vector (4.2)] and the total space-integrated inver-
sion were monitored nondestructively and on-line by
taking sequences of phase-contrast pictures. The probe
beam was tuned between the hyperfine states, so that
the |2, 10atoms stepped out as rising and the |1, —10
atoms as deepening from the background. The Rabi-
flopping of the total space-integrated inversion exhib-
ited a behavior reminiscent to quantum collapse and
revival well-known to occur in Jaynes—-Cummings type
systems studied in quantum optics. The epitome of a
Jaynes-Cummings system is a two-level atom coher-
ently coupled to a single-mode light field. The driven
atom is able to momentarily bury its coherence by
transferring it to quantum correlations of the light field.
Tracing over the degrees of freedom of the light field,
the atomic coherence appears to momentarily collapse
and revive at alater time. The coupled system consist-
ing of the BEC matter-wave and the internal atomic
degrees of freedom behaves similarly. If all atomic
dipoles oscillate in phase (groundstate BEC), the
space-integrated inversion exhibits strong Rabi-oscilla-
tions (Fig. 9). If the matter-wave field is strongly mod-
ulated (twisted condensate, higher topological mode),
the atomic dipoles oscillate at different phases, and the
Rabi-oscillations of the space-integrated inversion can-
cel out. Under the influence of the inhomogeneous cou-
pling strength G(2) the system gradually changes its
topology and thus causes the collapse and revival of the
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Rabi-oscillations. A quantitative model can be found
in[142].

Matthews et al. [141] extended the experiment |ater
by adjusting the condensate shape for long axial exten-
sion, exploiting the tricky TOP-gravitation interplay.
The radiation twists the system more and more, succes-
sively cranking up to four windings into the BEC. Past
some point, the radiation untwists the system again
until it finds its way back to the original form.

4.3.3. Superfluid flow. Superfluid liquids or gases
are distinguished by their ability to support dissipation-
less flow, i.e., flow that is exempt from viscous damp-
ing. The phenomenon of superfluidity is awell-known
property of liquid “He, but the relationship between
superfluidity and Bose—Einstein condensation in this
strongly interacting system is not trivial. The situation
is much simpler in weakly-interacting Bose gases,
where the superfluid phase is nearly identical with the
condensed fraction, and the normal fluid phase with the
thermal fraction. The availability of dilute gas Bose
condensates offers the unique opportunity to study the
superfluid-condensate interdependence. The early
experiments on the dynamical behavior of condensates
at very low temperatures already provided indirect sig-
natures of their superfluid nature, because the hydrody-
namic theory of superfluidity describeswell the collec-
tive excitations, aswe have pointed out in Section 4.3.1.
Furthermore, the observation of matter-wave interfer-
ence (Section 5.2.2) is an indication for superfluidity,
since quantum coherence is a characteristic of superflu-
ids.

Several experiments provided direct evidence for
the superfluid nature of condensates. Raman et al.
[143] performed a calorimetric measurement of the dis-
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sipation induced by stirring a condensate with a far
blue-detuned laser beam. The thermal fraction of the
atomic cloud was measured before and after stirring by
standard time-of-flight imaging and fitting a bimodal
density distribution to the condensed and thermal
phases of the cloud (Section 3.3.1). They observed a
critical value for the stirring velocity v.: For lower
velocities, the perturbation was found to be dissipation-
free, at higher velacities phonons were excited and the
cloud was heated. In a subsequent experiment, the den-
sity fluctuations induced by stirring were observed on-
line and in situ [144]. When the stirring velocity was
inferior to the critical velacity, the density was quasi
stationary at any instant of time thus indicating super-
fluid flow. However, when the stirring velocity
exceeded v, the stirring beam dragged the atoms piling
them up in front of it. The resulting pressure gradients
led to turbulent flow around the perturbation and dissi-
pation. Taking the asymmetry of the instantaneous den-
sity distribution resulting from the bow and the stern
wave of the moving laser beam as a measure for the
amount of dissipation, Onofrio et al. determined a crit-
ical velocity that agreed with the result of the cal orimet-
ric measurement.

The critical velocity v, found in the stirring experi-
ment was about ten times smaller than the local speed
of sound which is inversely proportional to the super-
fluid healing length (4.1),

Cs = hilJ2mE. (4.3)

In fact, while the onset of dissipation is accelerated by
turbulence around the macroscopic object traversing
the superfluid, the local speed of sound (4.3) is derived

for amicroscopic object. Chikkatur et al. [145] studied
the motion of impurity atoms through a condensate. For
that purpose, they produced an impurity BEC with well
defined initial velocity out of the original BEC by
inducing Raman transition from the trapped |F = 1,
me = —1[Btate to the untrapped |[F = 1, me = 0L Theini-
tial velocity was set by arranging the Raman laser
beams (polarization, encompassed irradiation angle,
relative detuning) to satisfy the Bragg condition (Sec-
tion 5.3.3) and the sdlection rules for the Raman transi-
tion. The impurity, not being constrained by the trap,
traversed the BEC before the trap was switched off, a
Stern-Gerlach magnetic field gradient was pulsed to
spatially separate the atoms being in different hyperfine
states and the atoms were probed by time-of-flight
imaging. When the initial velocity was well above a
critical value that coincided with the local speed of
sound, ultracold s-wave collisions between the impu-
rity atoms and the stationary condensate distributed the
momentum of the collision partners evenly and, in the
TOF images (Fig. 10), gaverise to a circular halo cen-
tered around the center-of-mass of the collision part-
ners. However, when the initial velocity was reduced,
the collision rate between the impurity and the station-
ary condensate was suppressed and the trgjectory was
more superfluid.

4.3.4. Vortices. Important manifestations of super-
fluidity are associated with rotational phenomena. An
example is the occurrence of scissors modes [146] that
are excited when an angular momentum is suddenly
applied to an anisotropic BEC. Scissors modes have
been generated by Maragd et al. [147]. They produced
a BEC in an anisotropic trapping potential and then
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suddenly reoriented the inclination of the symmetry
axis of thetrap. The response of the BEC wavefunction
is a pure oscillation of its tilt generated by irrotational
superfluid flow. The excitation spectrum reflects the
strong reduction of the moment of inertiafor the super-
fluid.

The most stringent manifestation of superfluidity,
however, is the occurrence of quantized and persistent
currents, called vortices. Vortices are stationary solu-
tions (or topological modes) of the Gross—Pitaevskii
equation (2.45) that, under the assumption of acylindri-
cally symmetric system, additionally satisfy the condi-
tion (r) = Y(r, 2€%?, wherek isan integer. In avortex,
the superfluid current is driven by the phase gradient,
v = Ailmi$ . The superfluid flow around a close path
must by quantized to make the wavefunction single-

valued, $vdr = 21a/m, i.e., the phase winds up to mul-

tiples of 21t Also, the flow must be persistent, because
its winding number can only be changed discontinu-
ously by overriding an energy barrier, which requires
energy from thermal excitations. The normal compo-
nent of agas can have, of course, circular flow, aswell.
However, the disorderly microscopic maotion of every
individual particle causes a viscous drag that precludes
the persistence of the flow in the absence of a driving
torque. Thisisin contrast to superfluid flow which per-
sists even without an externaly imposed rotation.
Questions about the stability, the formation and the
topology of vortices have been addressed in recent
experiments [9, 10, 148-150].

Stability. In a topologically singly-connected trap
(e.g., harmonic potential), vortices are not the lowest
energy eigenstate, and they must decay into the ground
state. If the mean-field interaction energy of the con-
densate is weak compared to the kinetic energy,
gny/hw, < 1, the healing length islarger than the size of
the condensate, § > a,,,, and the vortex rapidly decays
dissipating the excess energy to thermal excitations.
Such Bose condensates cannot be considered super-
fluid. If the mean-field interaction is strong, the vortex
spontaneously breaks the azimuthal symmetry, dislo-
cates from the center and spirals out of the condensate
[151]. However, the decay time may be pretty long, and
under certain conditions a vortex might be trapped off
center. On the other hand, a vortex can be the ground-
state in multiply-connected traps (e.g., torus-shaped
potentials). Such apotential can berealized asthetime-
average of a harmonic potential with a small rotating
anisotropy [10]. Ancther scheme uses harmonically
trapped double-condensates where a ground-state BEC
is located at the trap center. An excited internal state
BEC can form a vortex in a circular orbit around the
ground-state BEC [9]. If the condensates repel each
other, the vortex core is pinned by the ground state
BEC, so that the vortex is very stable.

For mation. The ideas on how to create vortices can
be divided into two classes. Some propose to imprint an
LASER PHYSICS  Vol. 11
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angular momentum into the atomic cloud by rotating
the (anisotropic) trap during the process of forced evap-
oration. This can be done with rotating magnetic fields
or by stirring the atomic cloud with alaser beam. When
crossing the phase transition, a vortex state should
nucleate within the stirring path. Others propose to
imprint a circular 2t phase gradient into a previously
created condensate. These procedures must drive the
local density in the center of the trap to zero and then
rely on dissipative relaxation of the BEC into the vortex
state. Dobrek et al. suggested to exploit the inhomoge-
neous Stark-shift which a far-detuned optical beam
with an appropriately designed intensity profile gener-
atesinaBEC [152]. An alternative method based on the
phase imprinting idea but avoiding the need of relax-
ation processes has been suggested by Williams et al.
[2140]. In their configuration the phase gradient is cre-
ated via adiabatic Raman-transfer between two internal
states of the condensate atoms within a small rotating
area of space. Thus a coherent process is used to
directly build and shape the vortex wavefunction.

The first experimental evidence for vortices was
reported by Matthews et al. [9]. They produced and
recorded vortices in a coupled double-species conden-
sate system using amethod based on the phase imprint-
ing idea. The method consisted in dynamically convert-
ing atoms from a nonrotating |1, —1C0ground-state BEC
to |2, 10atoms (or vice versa) having a torus-shaped
topology by time-dependent and spatially inhomoge-
neous adiabatic popul ation transfer.

In the experiment, Matthews et al. [9] produced a
standard |1, —10ground-state BEC with a size of typi-
cally r.s = 54 pum in an isotropic harmonic TOP trap
With @4,/ 211 = 7.8 Hz secular frequency. They coher-
ently coupled the two hyperfine states using two-pho-
ton microwave radiation tuned A,;/21 = 94 Hz below
(or above) the resonance and adjusted the radiation
power to produce Q,/2m1= 35 Hz Rabi frequency thus
causing the Bloch vector of the two-level systemto pre-

cess with the generalized Rabi frequency G, = (Q7 +

A%)Y? = 211 x 100 Hz. Spatial and temporal control

over the conversion rate between the hyperfine states
was achieved by additionally focusing amoveable laser
beam (P = 10 nW, w, = 180 um) onto the cloud and
rotating it with frequency w,,; at adistancer,, =75 um
around the symmetry axis of the trap. The laser was
detuned A,/ 21t = 800 MHz blue from the 8Rb D2 line
thus giving rise to an inhomogeneous time-dependent
AC Stark-shift Q,(r, t)%44,, where Q, is the Rabi fre-
guency on the D2 transition. While ground-state atoms
located at the center of the trap did not sense the mod-
ulation of the Stark-shift, atoms located at distance r,
from the trap center were subject to the full modulation
depth and experienced the microwave radiation on two
modulation sidebands located at A, = w. In order to
fulfill the resonance condition for one of the sidebands
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Fig. 11. Density distribution (a) of the vortex state (the visible atoms are in the upper hyperfine state), (b) after a 172 pulse, and
(c) after a Tt pulse (the visible atoms are in the lower hyperfine state). The images (d) and (€) visualize the phase slip around the

vortex (courtesy of [9]).

and drive transitions from the ground-state to the |2, 10J
state, the rotation frequency was adjusted to the preces-
sion frequency, |w:| = G;¢. Thisis equivaent to ensur-
ing, that the phase delay of the precessing two-level
Bloch vector, G;t, was equal to the azimuthal matter-
wave phase variation of the newly created |2, 100atoms,
wt, dong the rotation path, and that the matter-wave
phase was single-valued around aclosed |oop. The mat-
ter-wave phase gradient caused circular flow and
formed avisible vortex after about 70 ms. The direction
of the vortex rotation could be arbitrarily chosen
through the sign of the detuning A, ;. Vortices could be
formed either in the |1, —1state around a central |2, 101
BEC or vice versa. The small positive buoyancy of the
state |1, —10with respect to |2, 1[0made the first option
more stable.

While in harmonically trapped single-species con-
densates the diameter of the vortex core is on the order
of the healing length 2¢ and too small to be seen by
in situ spatial imaging, in the double-species configura-
tion the diameter of the vortex core is much larger,
because it is determined by the size of the central core
BEC. The core BEC can partialy or completely be

removed with resonant light pressure and the vortex be

studied as a function of the core size and the filling

material. To see the vortex, Matthews et al. took anon-

destructive image of the density distribution of the

upper [2, 10state. Then, on the same sample, they

applied a resonant two-photon radiofrequency 172

pulse which mixed the vortex with the core BEC. The

resulting ring-shaped matter-wave interference pattern

revealsthe phase profile of the vortex. This Ramsey type
interference technique will be detailed in Section 5.3.1.

Finally, a second radiofrequency 172 pulse completely

inverted the population of the states [2, 10and |1, —10
and permitted recording the density distribution of the
nonrotating ground state (Fig. 11).

Vortex precession. A radial force acting on avortex
results in its azimuthal displacement and precession
around the symmetry axis. The effect isknown as Mag-
nus effect [ 153] and isdueto pressureimbalances at the
vortex surface. A radial force arises naturally when the
core is displaced from the center, because local pres-
sure gradientstend to force it outwardsto lower density
regions. Anderson et al. [150] observed aroughly 1 Hz
slow precession of the vortex core by a succession of
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Fig. 12. Array of 7, 8, and 11 vortices in a Bose—Einstein condensate stirred by alaser beam. The absorption image was taken after

a 27 ms period of free expansion (courtesy of [148]).

nondestructive images for various sizes of the core
BEC. A radia motion of the vortex as expected for dis-
sipative interaction with a therma cloud was not
observed. Instead, the vortex core decreased itssize due
to gradually reduced repulsion of the slowly decaying
core BEC.

Vortex lattices. Superfluid “He in a rotating bucket
spontaneously develops patterns of symmetrically
arranged vortices. Similar phenomena can be expected
when a dilute gas Bose condensate is forced to rotate.
Butts et al. [154] have calculated the vortex patterns
that will form as a response to forcing a BEC to rotate
with a predefined frequency Q. The energy in the coro-
tating frame gets an additional contribution from the
centrifugal term U,o(r) = Uya(r) — QL,, where L, =
NI, and |, = i(yo, — xd,) is the single-particle angular
momentum. If therotation is slow, the energy QL ,istoo
small to force the condensate wavefunction to rotate. If
the rotation frequency ishigher than acritical value Q_,
the time-averaged potential, U,(r) eventually develops
alocal maximum in the center (torus shaped potential).
For noninteracting gases, the critical frequency coin-
cideswith theradial secular frequency, Q.= w;, and the
radial restoring force of the trap does not balance the
centrifugal force anymore, so that the atoms escape
from the trap. However, for superfluid gases the critical
frequency is reduced, Q. < w,. Between the rotation
frequenciesQ = Q. and Q = wy, the lowest energy state
in the torus shaped potential isavortex filament around
the center. At even higher rotation frequencies, one
might expect single vortices with a higher winding
number (more than 21t phase winding for a single path
around one vortex). However, single multiple-order
vortices in harmonic traps are always very unstable.
Instead, vortex lattices [154] are formed. For a given
trapping potential and mean-field interaction, the sym-
metry of the lattice and the number of vortices depend
on therotation frequency Q. Counterintuitively, the sin-
gle-particle angular momentum |, is not quantized.
Upon varying Q, forbidden ranges of |, alternate with
allowed bands. The discontinuous transition from one
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vortex pattern to another is afirst-order phase transition
and spontaneously breaks the previous azimuthal sym-
metry to form another one. An upper limit for the rota-
tion speed is set by the balance of the centrifugal force
and the radial restoring force of thetrap at Q = w,.

These vortex patterns have been observed in arecent
experiment, that employed the stirring method of rotat-
ing the trap [10]. Madison et al. produced a cigar-
shaped 8’Rb condensate with N = 10° atomsin a clover-
leaf trap with w, =211 x 12 Hz, w, = 21t % 220 Hz. The
ratio of mean-field interaction to kinetic energy was
gno/fie, = aj,, /282 > 100. Along the symmetry axis but
dightly displaced from the center, they focused a far
red-detuned dipole-force laser beam in order to create a
weak anisotropy in the trapping potential. During
forced evaporation and while crossing the BEC phase
transition, this optical “spoon” is rotated around the
symmetry axis. Beyond a certain critical rotation fre-
guency, Q. = 2rx 150 Hz, they observed the formation
of a central vortex. At higher frequencies, they could
image vortex lattices with up to eleven vortices sym-
metrically arranged in the transversal plane (Fig. 12).
At stirring frequencies approaching the radial secular
frequency of the trap w,, the BEC wavefunction got
more and more turbulent and finaly vanished alto-
gether. After removing the optical spoon, thelifetime of
a single vortex was measured to be approximately one
second (the lifetime of the condensate being much
longer). The vortex decayed to the ground-state of the
unperturbed harmonic potential most likely by spiral-
ing out of the center. Vortex patterns were found to
decay by successively losing one vortex at atime.

Madison et al. probed the density distribution of the
vortices by absorption imaging. The diameter of the
dark core of avortex inthe unperturbed trap (no stirring
spoon) is set by the healing length and measures about
2¢& = 0.4 um. Thissizeistoo small for optical imaging.
However, after a 30 ms period of ballistic expansion
the core diameter reached 15 pum and could be probed
easily.
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Fig. 13. Dark solitonsin a Bose-Einstein condensate. The images (A to E) show experimental measurements, and the images (F to
J) are calculated density distributions for various times after a phase imprint of 1.51 on the top half of the condensate. A positive
density disturbance moved rapidly in the +x direction, and a dark soliton moved oppositely and significantly slower than the speed
of sound (reprinted with permission from [164]).

Angular momentum. Zambelli et al. [155] have
suggested a method for measuring the flow around a
vortex viathe excitation of quadrupolar surface modes.
In an axisymmetric trap, the transversal quadrupole
modes can be linearly decomposed into two counterro-
tating modes with angular momentum +2# and fre-
guencies w, = +w. In arotating BEC, the degeneracy of
the frequenciesis lifted by an amount that corresponds
to the rotational energy of asingle atom,

2L,
—

mr

. — 0 (4.4)

wherer isthe average radius of the orbit. This behavior
is known as Sagnac effect. Chevy et al. [149] per-
formed an experiment where they first stirred the BEC
and then excited the quadrupolar surface modes simi-
larly to the earlier experiment of Onofrio et al. [135].
They observed the quadrupolar oscillation in time-of-
flight measurements and noticed a continuous rotation
of the principal axis of the quadrupolar modeif vortices
had been excited. Also, being in the Thomas—Fermi
limit, they could infer r from TOF images and calcul ate
the angular momentum L, of the rotating BEC from
Eqg. (4.4) as afunction of the chosen stirring velocity.
They found L= 0 below the critical velocity. At the stir-
ring velocity Q., the angular momentum suddenly
jumped to L, = # and gradually increased (in fractions
of #) up to L, = 34 as the stirring was further acceler-
ated. At stirring velocities approaching the radial trap
frequency wy, the vortex pattern got turbulent and L,
diminished again and finally vanished.

4.3.5. M atter-wave solitons. Solitons are localized
nonsingular solutions of any nonlinear wave equation
satisfying |Q(r, t)] = |@(r — vt)|. Solitons are well
known to occur in nonlinear optical media, e.g., in opti-
cal fibers when the dispersion is counterbalanced by
self-phase modulation so that they propagate without

spreading. The Gross—Pitaevskii equation is another
example of a nonlinear wave equation that can exhibit
soliton-like solutions. Correspondingly, so called dark
solitons or kink-wise states, i.e., states with dynami-
cally stable density minima, are expected in conden-
sates with repulsive interactions. They have been pre-
dicted for one-dimensional BECs [156-159] and may
occur in higher dimensions, aswell. In contrast to truly
topologically stabilized defect states like vortices, dark
solitons are pseudodefects, whose decay may be very
slow although they are topologically trivial. Due to the
greater motional freedom of their wavefunctions they
may be untwisted by complex deformations [160].
Matter-wave soliton-like states have first been observed
in superfluid *He-B [161]. In dilute gases, their size is
expected to be on the order of the healing length which
typically corresponds to afew hundred nanometers.

Dum et al. [162] proposed to engineer dark solitons
in Bose condensates using adiabatic Raman-transfer,
and many other schemes have been suggested. Burger
et al. [163] and the NIST group at Gaithersburg [164]
recently successfully created and observed solitons.
Both groups employed a method based on the applica-
tion of an inhomogeneous matter-wave phase shift.
They created and magnetically confined a rubidium,
resp. sodium, condensate and irradiated half of the con-
densate with a far-off resonance laser beam pulse
(detuning A, Rabi frequency Q, duration T < £/gng)
thus advancing the phase of this half condensate by ¢ =
Q21/4A. When the phase shift was adjusted to be on the
order of 1, a steep phase gradient developed at the
boundary plane driving the density distribution in the
condensate to adjust itself until a density minimum
formed along the plane. The density distribution of the
condensate was mapped by time-of-flight imaging at
various delays after application of the phase shifting
laser pulses (Fig. 13). Denschlag et al. additionally
used an interferometric technique based on Bragg dif-
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fraction (Section 5.3.3) to monitor the phase distribu-
tion of the condensate. The observed density kink cor-
responds to the node of atopological dipole mode and
can also be interpreted as a one-dimensional dark soli-
ton on a finite background, where the kink and the
background move synchronously [140, 156, 159].
These states represent standing matter-waves for which
the trap serves as a cavity.

The steep phase gradient at the nodal plane exerts a
force that tries to enhance the gap, while the repulsive
interaction workstofill it. At zero temperature, thisbal-
ance guarantees the dynamical stability of the soliton.
While a perfectly dark soliton should be stationary, the
experiments [163, 164] exhibited a propagation of the
density kink perpendicularly to the noda plane. This
featureisaresult of thefinite contrast of the kink. How-
ever, the propagation velocity must always be inferior
to the local speed of sound,

nsol
Vst = Cg [—>

n

(4.5)

where n isthe condensate peak density and ng, the den-
sity at the bottom of the dark soliton[157, 158]. Figure 13
shows that the soliton devel ops a curvature as it propa-
gates. The reason for this is the decrease of the local

speed of sound, ¢, = ,/gn,/m, at the edge of the BEC

where the density gets smaller. A second reason is that
the density inthe dip ny, tendsto zero towardsthe edge.
In the presence of athermal cloud, dissipation reduces
the contrast of the density kink and accel erates the soli-
ton until it reaches the speed of sound c, and finally
vanishes.

CHAPTER 5.
ATOM OPTICS WITH BOSE-EINSTEIN
CONDENSATES

In the past decade, various methods and schemes of
laser cooling and trapping of atoms became powerful
toolsin atom physics and quantum optics. In achieving
aways lower temperatures and extreme densities, the
whole field moved to the boundaries of the new regime,
where coherent matter-wave interactions become dom-
inant. This development culminated in the experimen-
tal achievement of Bose-Einstein condensation. The
atoms confined on microscopic or macroscopic scales
at high phase space density are governed by collective
and quantum statistical effects. This opens up new per-
spectives for many-body studies in regimes, where
standard approximations cease to be valid. It is, for
example, particularly interesting to explore atomic
two—body interactions, which may play arolein coher-
ent matter-wave optics similar to the role played by
atom—photon interactions in quantum and nonlinear
optics. At the same time, the field of atom optics devel-
oped rapidly with the demonstration of atom optical
elements like atom mirrors, atom lenses and beamsplit-
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ters. These two fields are now being combined and
form the basis of the new emerging field of coherent
atom optics.

The atom laser is the matter-wave analogue of the
photon laser. It is a coherent atom source “ pumped” by
an ultracold and dense ensemble, which is stimulated to
feed one mode of the atomic de Broglie field. A Bose
condensate trapped in the ground state of a confining
potential and fed from an evaporatively cooled thermal
cloud may aready be understood as a rudimentary sta-
tionary pulsed atom laser. The trap plays therole of the
laser cavity. However, while lasers can oscillate in any
cavity mode, BECs generally condense in the ground
state of the trap. Similar to the invention of the laser in
the early sixties with all its fascinating scientific appli-
cations, coherent atom sources will open new areas of
fundamental physics and applications, in part till
unforeseen. These may include atom interferometry,
atom lithography, atom microscopy, atom holography,
atom sensoring or nanostructuring. Many applications
demand dense, bright and coherent sources of atomsin
order to exhaust their capabilities. In this respect, atom
lasers are much superior to therma atomic beams.
While atypical thermal beam has about 10-12 atoms per
mode, a Bose-condensed mode contains >1 atoms. The
recent demonstrations of the experimental feasibility of
Bose-Einstein condensation [3-6, 110, 165] boosted
theoretical and experimental work and accelerated the
development of thiswholefield.

As an example, atomic holography may become
practical with the availability of spatially coherent mat-
ter-wave sources. Microfabricated holograms may have
typical dimensions of afew 100 pm and minimum fea-
ture sizeson the order of 1 um. Exploiting the repulsive
self interaction, one may let a BEC expand, pass it
through atransmission hologram computed judiciously
to produce the desired diffraction pattern, and refocus
it. Small chromatic aberration is due to small velocity
spread. The resolution is limited on one hand by the
atomic de Broglie wavelength, on the other hand by the
size of the smallest structures of the hologram [28, 166,
167] which can be made as small as 10 nm. Another
important quantity, the resolving power, is limited by
the number of holes in the hologram and the velocity
spread of the atoms. While the reduction of the vel ocity
spread by spatial filtering of an incoherent atomic beam
isonly possible at the cost of huge loss in intensity, the
velocity spread of coherent matter-wavesis at its quan-
tum limits.

The present chapter reviews recent experimental
work on coherent atom optics. In order to place our
topic into the right context, we start with a very brief
overview of conventional atom optics. We discuss the
impact of the advent of BEC on the field of atom optics
in the Sections 5.2 and 5.3, on the basis of recent real-
izations of atom lasers and interferometers. Section 5.4
is devoted to experiments in nonlinear atom optics,
Section 5.5 relates the recent demonstration of a coher-
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ent matter-wave amplifier and gives a brief outlook on
the evolution of thefield of quantum opticswith atoms.

5.1. Conventional Atom Optics

The far-reaching analogy of light waves and atomic
beams is a result of the particle-wave duality and thus
of the quantum nature of both light and matter. It moti-
vated de Broglie in 1924 to assign a wavelength to
material particles that depends on the particle's
momentum:

(5.1)

Contrary to photons [168], there is no doubt about the
fact that atoms are (also) particles. Whether an atom
rather behaves like a particle or a wave depends on the
specific experimental situation. In interferometers,
atoms interfere with themselves if their de Broglie
wavelength is coherently split and recombined. Atoms
are capable of interfering with one another if their de
Broglie wavelength is larger than their distance. This
requires high densities and very low temperatures (at
least in some dimensions). In fact, what matters is not
the small kinetic energy of the atoms, but asmall veloc-
ity spread, i.e., a high phase-space density. At phase-
gpace densities so high that the atomic de Broglie
waves get into contact, quantum statistical effects start
to influence the atomic dynamics, i.e., Bosons behave
differently from Fermions.

Analogoudly to the distinction between classical
optics and laser optics, we may divide thefield of atom
optics into conventional single-atom optics with atoms
that are not mutually coherent and atom optics with
Bose-condensed atoms. In conventional atom interfer-
ometers, one takes advantage of the interference of
every atom with itself, and most atom optical devices
do not rely on the mutua coherence of the atoms. On
the other hand, nonlinear interactions between the
atoms make the dynamics of coherent matter-waves
interacting with atom optical devices much more com-
plex than single-atom optics. Atom optics with conden-
sates offers the advantage of large de Broglie wave
amplitudes and ultra-long de Broglie wavelengths. In
fact, the coherence length of aBEC isequal toits phys-
ical size. Thishas obviously an important impact on the
sensitivity and resolution of atom optical devices, aswe
shall soon see.

We will not go into details about conventional (sin-
gle-particle) atom optics here, since there are many
excellent topical reviews [169-172]. However, for the
sake of completeness, we list below the most important
atom optical devicesthat have been devel oped and used
in experiments.

5.1.1. Atom optical devices. In analogy to the
manipulation of light beams by optical el ements, atom-
optical components have been developed for manipu-
lating atomic matter-waves. The basic equipment of an
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opticslab consists of cavities, lenses, refractive, disper-
sive and birefringent media, mirrors, beamsplitters,
transmission and reflection gratings, fibers, acousto-
optic modulators [169, 173]. The matter-wave counter-
parts of all those elements have been realized today.
Most elements exploit the interaction of the mechanical
degrees of freedom of the atoms with light. Note that
the atom optical devices only manipulate the atomic
field density and the first order coherence.

Atomic beams have along history of applicationsin
ultra-high precision experiments, e.g., in atomic clocks
[174]. Since the development of laser cooling tech-
niques, atomic beam slowing and cooling has proven a
powerful source for many applications [64, 65]. Today,
atomic beams are often used to load magnetic, optical,
and magneto-optical traps for atoms.

Traps for atoms are to some extent analogous to
optical cavities for light. In second quantization the
radiation field inside a cavity is described by harmonic
oscillators, just like the motion of atoms confined in a
harmonic trap [175]. At very low temperatures, kT <
ity 4, the effects of quantized motion can be directly
observed [74, 176].

Lensesfor atomic waves may berealized by exploit-
ing the radiation forces of laser beams, or if the atoms
are moving within a waveguide, by arranging for spa-
tial or temporal variations of the fields [177-179]. Mir-
rors for atoms can be made by a far blue-detuned eva-
nescent wave emerging from the surface of aglass sub-
strate[180]. Aspect and hisgroup let atomsbouncein the
gravitationa field on a curved and (for matter-waves)
achromatic mirror more than twenty times[181]. Thisis
a rudiment for a gravitational cavity for atoms, where
many atomic bosons could occupy one cavity mode in
analogy to optical resonators. Another option for
atomic mirrors is a microfabricated magnetic surface
that repels the atoms approaching the strongly inhomo-
geneous magnetic surface field [182]. Already, falling
Bose-Einstein condensates have been reflected from a
far blue-detuned sheet of light [183]. Gratings are
microfabricated [184] or based on standing light waves.
They are at the heart of atom interferometers and
aready permitted the development of high precision
applications and experiments (atomic gyroscopes, mea-
surement of the gravitationa acceleration g). Waveguides
are the atom-optical counterpart of fibers. Forces that
guide the atoms can be exerted by electric or magnetic
fields (single wire [185], quadrupolar waveguides
[186]), or by light beamsviathe dipol e interaction. Pos-
sible geometries are evanescent wave hollow fibers
[187, 188] or blue-detuned hollow-core laser beams
[189]. Recently, Bose—Einstein condensates have been
transferred to such hollow-core laser beam waveguides
[190]. Inhomogeneous magnetic fields (e.g., magnetic
trapping fields) act as Stern—Gerlach filters and can be
thought of as matter-wave polarizers.

De Broglie wave frequency shifters are the matter-
wave analogue of acousto-optical modulators (AOM).
LASER PHYSICS Vol 11
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They have been implemented in conventional atom
interferometers [191] and more recently in coherent
matter-wave optics [20]. The matter-wave experiment
will be discussed in Section 5.3.3. Finally, we want to
mention atom holography [167], atom lithography
[177] and atom microscopy [192] as examples for the
successful application of matter-wave optics. It is very
likely that the availability of coherent matter-waves
will have a strong impact on these fields, too.

5.1.2. Atom interferometer s. Atom interferometers
split and recombine a single atom or an atomic ensem-
bleintime or in space (or both). If the temporal or spa-
tial evolution is coherent, we observe interference phe-
nomena. In many experiments one attempts to produce
large splittings of the atomic de Broglie wave, but even
amotionless single particle can act as an interferometer
and produce Rabi- or even Ramsey fringes [193].
Recoil effects in the interaction of atoms with light
become important when the atoms are so cold that the
atomic momentum verges on the wavevector of the
photons, p = #k. Each absorbed photon adds a quan-
tized amount of momentum, 7k, to the motion. The
application of light-induced 172 pulses to the atoms
splits the de Broglie wave and entangles the internal
and motional degrees of freedom. Variations of this
idea |ed to the development of Ramsey-Bordé interfer-
ometers and atomic fountains [194].

5.2. Atom Laser

Probably the most striking feature of Bose-con-
densed atoms is their mutual (first-order) coherence
spectacularly demonstrated by Andrews et al. [195]. In
guantum optics, the epitome of a coherent light source
isthe laser, and we may ask, whether there is a matter-
wave analogon, and what the rel ationship between such
an atom laser and a Bose condensate would be. In fact,
we may already consider a BEC to be a rudimentary
stationary atom laser pulse, the trapping potential tak-
ing over the role of the cavity. The atom laser, in the
sense of a coherent atomic wave emitting device, must
satisfy afew more requirements. Generally, we ask for
a continuously working output coupler for a coherent
atomic beam and an irreversible pump process that
refills the atom-lasing medium. Many theories on atom
lasers or bosers have been developed [196-204], and
we will not explain them here. Instead, along the lines
set by the analogy between optical and conventional
atom optical devices, wewill briefly describe the exper-
imental progress that has been made on the way
towards an atom laser that deserves this name.

5.2.1. Bosonic stimulation and evaporation. The
gain mechanism for optical lasers can be understood as
photonsin alaser mode stimulating atomsto emit more
photons into the same laser mode. The atom laser
works similarly. The atoms trapped in a potential con-
stitute a thermal reservoir. Binary collisions redistrib-
ute the atoms over the energy states. If a state already
contains a population of N atoms, the Bose quantum
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Fig. 14. Bosonic stimulation. The curves show the growth of
the condensate towards thermal equilibrium after a sudden
initial desequilibration for various initial numbers of con-
densed atoms (courtesy of [205]).

statistics encourages an atom involved in a collision
processto join this state. The bosonic enhancement fac-
tor is proportional to N + 1. Bose condensation is nec-
essarily a result of bosonic stimulation. However, the
dynamics and the time scale of the formation process
were controversially discussed, until recent experi-
ments performed at the MIT clearly demonstrated that
BECs form at finite times and develop long-range
order.

In order to directly observe bosonic stimulation,
Miesner et al. [205] evaporatively cooled 2 x 107 mag-
netically trapped atoms close to the condensation
threshold at 1.5 pK. The final temperature was set by
the final rf frequency of the evaporation ramp. Then
they suddenly decreased the rf frequency by 200 kHz,
thus initiating a fast truncation of the hot tail of the
energy distribution. The quick subsequent relaxation
produced an oversaturated “thermal” cloud, and the
nucleation process and exponential growth of the BEC
within the thermal cloud was observed time-resolved
by nondestructive dispersive imaging of the atomic
cloud (see Section 3.3.2).

Figure 14 shows the growth of the condensate atom
numberstowards equilibrium starting with various con-
densed atom numbers at the time of the fast rf trunca-
tion. If no condensate was present, the growth started
slowly and increased exponentially until thermal equi-
librium was reached. The exponential acceleration of
the growth is a clear indication of bosonic stimulation
and is in contrast to pure thermal relaxation, which
slows down exponentially. For the experimental condi-
tions (thetrap secular frequencieswere w, = 21 x 83 Hz
and w, = 211 x 18 Hz) the formation of BEC took about
40 ms, while elastic callisions happened on the time
scale of 2 ms. Thelarge collision rate ensured that dur-
ing the process of forced radio-frequency evaporation
(Section 3.1.4) the atomic sample is aways held in
thermal equilibrium so that, even while crossing the
phase transition to BEC, the condensed fraction of
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Fig. 15. Scheme of the setup for interference observation.
A cigar-shaped condensate is built in a cloverleaf trap, it is
split into two parts with a blue-detuned far-off resonance
laser beam, suddenly released from the trap and partially
illuminated by alaser light sheet. The interference patterns
are recorded by absorption imaging.

atoms reflects the instantaneous temperature rather
than the dynamics of condensate formation.

Other experiments have confirmed the role of
bosonic stimulation and matter-wave amplification.
They will be discussed in Sections 5.4.4 and 5.5.2.

5.2.2. Coherence and interference. First-order
coherence and long-range order are necessary prerequi-
sites for the assignment of a single global phase to a
condensate. The coherence properties of BECs and the
possibility to measure a condensate’'s phase have in the
past been questioned. The phase of a BEC is certainly
not observable by itself, but only the relative phase of
two condensates. In superconductors, phase differences
between the order parameters of coupled systems are
measured through Josephson-oscillations. For dilute
gases, the first-order coherence and long-range order of
the condensate wavefunction have been demonstrated
in a remarkable experiment by observing matter-wave
interference fringes generated by two overlapping con-
densates [195].

Andrews et al. [195] produced a cigar-shaped BEC
made of 5 x 10° atoms and no apparent thermal cloud
in a cloverleaf trap with secular frequencies w, =
140w, = 211 % 243 Hz. They subsequently cut it into two
parts distributed along the weak axiswith a12 umthin
laser light sheet (Fig. 15). The laser light was blue-
detuned by 75 nm below the D2 resonance, so that heat-
ing due to Raleigh scattering could be neglected. The
two parts of the condensate were then released from the
trap by suddenly removing all magnetic fields and laser
beams. During free expansion, the condensates pro-
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Fig. 16. Interference patterns of two released condensates
recorded with the setup sketched in Fig. 15 for three differ-
ent values of the height of the potential barrier (i.e., intensity
of the laser light sheet that separates the trapped conden-
sates). The three pictures on the right hand side are calcu-
lated patterns [206] (courtesy of [115]).

gressively overlapped and formed interference fringes.
After 40 ms time-of-flight, the interference patterns
were probed by absorption imaging (Section 3.3.1).
Standard absorption techniques only sense the inte-
grated column density and blur the images of the
dightly curved interference patterns (Fig. 16) [206].
Andrews et al. solved this problem by only probing
atoms within a 100 pm thin slice orthogonal to the
imaging direction. This was achieved by selectively
pumping the atoms within this dlice to the F = 2 hyper-
finelevel of the groundstate which in turnisresonant to
the probing transition.

Two condensates interpenetrating at a velocity v
exhibit interference fringes with a periodicity that cor-
responds to the relative de Broglie wavelength A =
h/mv, where v = d/t. Here, t is the time-of-flight and d
istheinitial separation of the BECs assumed to beideal
point sources, but the finite extension makes only small
modifications. The interference patterns observed in
experiment [195] depended on the initial separation of
the condensates, on the time-of-flight and on the way
they were released from the trap (pulsed or cw). The
interference fringe contrast was found to be between 50
and 100%. The interference fringes periodicity was on
the order of a few micrometers, which corresponds to
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atoms having a kinetic energy much lower than the
mean-field energy and the zero-point energy of the har-
monic trap. The reason for this is the large anisotropy
of the trapping potential: The released condensates
expand predominantly in radial direction, but are very
slow in axial direction.

The ahility of freely expanding condensatesto inter-
fere proves that there are no random local phase shifts
during ballistic expansion, and that the BECs preserve
their long range order. The homogeneity of theintrinsic
phase of trapped BECs has recently been confirmed in
other experiments[137, 207, 208] (Section 5.4.2) based
on the technique of Bragg diffraction (Section 5.3.3).
Simsarian et al. [209] measured the evolution of the
local phase of released condensates and found that,
under the influence of mean-field repulsion, the phase
develops a nonuniform profile during the ballistic
expansion.

In the origina interference experiment [195], the
magnetic trapping fields created in conjunction with the
laser light sheet a double-well potential. However, the
potential well was so large, that it prevented tunneling
between the condensates and decoupled their dynam-
ics. Different atom numbers in the condensates, imper-
fections in the exact symmetry of the two traps and
technical noise caused the condensate phases to evolve
independently and asynchronously. However, it might
be possiblein future experiments (e.g., by employing a
very narrow light sheet) to allow for quantum tunneling
and, ultimately, to observe Josephson oscillation
between two condensates (Section 5.3.2).

The degree of coherence (i.e., the amount of fluctu-
ations in the field amplitudes) is measured by the first-
order correlation function. Similar to optical double-dlit
experiments, the observed matter-wave interference
only indicates first-order coherence of the interfering
beams. However, signatures for higher-order short
range coherence of condensates have been found in
other experiments: The second-order correlation func-
tion, which is a measure of the amount of fluctuations
in the field intensities, has been estimated from mea-
surements of the release energy of BECs [210]. The
third-order correlation function revealed itself by com-
parison of the three-body recombination rates of con-
densed and thermal clouds [211].

5.2.3. Output coupling. Coherent output cou-
pling from Bose condensates out of magnetic trapsis
generally achieved by radiatively coupling trapped
|-Cand untrapped |+[1Zeeman-states. A condensate of
N atoms driven with Rabi frequency Q evolves
with time 1 into a superposition [b_|-0+ b,J+ON =

On0O
Zr’?:o NGB "0" N = n, nC with b_ = cosQU/2
OnQ
and b, = sinQt/2. The total wavefunction describes an
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entanglement between trapped and untrapped states,

HENEE
IN-n,nC= |0 N O -"+Y, which is analog to the
UnO

coherent splitting of a photon Fock state by an optical
beamsplitter. The inhomogeneous trapping potential
actslike a Stern—Gerlach filter and g ects the untrapped
atoms. We have, however, seen in the previous section,
that the release process preserves the intrinsic coher-
ence of the released BEC, which propagates according
to asingle-mode wave equation. The coupling between
trapped and untrapped condensates therefore remains
truly coherent.

Coherent output coupling of parts of condensates
out of magnetic traps has been redlized in severa dif-
ferent ways. Radiofrequency radiation was used for
pulsed [14, 18] and continuous [16] output coupling.
Laser beams in Raman configuration have been used to
create a quasi-continuous, well-collimated coherent
atomic beam [17], and a mode-locked system has been
demonstrated [15]. In this section, we will briefly dis-
cuss the experiment of Mewes et al. [14].

Thefirst output coupling experiment was performed
by Mewes et al. in a sodium condensate with 5 x
106 atoms and no discernible thermal fraction confined
in a cigar-shaped cloverleaf trap with secular frequen-
cies w, = 20w, = 211 x 400 Hz. The magnetic trapping
field had a bias of By = 1.1 G, which removed the
degeneracy of the trapped m: = —1 and untrapped
me =0, 1 Zeeman states within the lower hyperfine
multiplet F = 1. Mewes et al. coupled them via
radiofrequency radiation. With time, the system
evolved into a coherent superposition of Zeeman states
[b_; -1+ by|oCH by 10N, where b_; = cos?Qt/2 and by =

i/2sinQt and b, = —sinQt/2. Atoms in the mg = 1
state were quickly repelled from the trap center by the
magnetic field, while atoms in the mz = O state were
dowly accelerated by gravity. The spatial dependence
of the Zeeman shift in the magnetic trap inhomoge-
neously broadened the radiofrequency resonance and
made the output coupling efficiency spatially depen-
dent. This problem was solved by either sweeping the
radiofrequency through the resonance or by applying
pulses so short, that the Fourier broadening dominated
the inhomogeneous broadening. Repetitive application
of 5 us long pulses gave rise to the absorption images
shown in Fig. 17. By controlling the amplitude of the
radiofrequency, the output coupling could be adjusted
between 0 and 100%. In a subsequent experiment, it
was verified that the output coupling preserves the
coherence by observing interference fringes between
outcoupled pulses [195]. This aso shows that this out-
put coupler may be understood as the analogue of a
pulsed mode-locked laser.

It is also important to consider collisions between
the output coupled atoms and the atoms remaining in
the condensate. Those collisions represent losses for
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Fig. 17. Output coupling of parts of a BEC by irradiation of
radiofrequency pulses (courtesy of [14]).

the output mode and may even lead to bosonically fed
momentum sidemodes (Section 5.4.4). A low conden-
sate density is advantageous for reducing the atomic
scattering. On the other hand, the BEC gets superfluid
a high densities thus allowing the dissipationless
motion of the output coupled atoms through the BEC.
We remind here of the study of the motion of impurity
atoms through a condensate by Chikkatur et al. [145].

Within the small region of space occupied by the
trapped condensate, the magnetic field is harmonic to
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first order except for a tiny deformation at the bottom
side dueto gravity. For the experiment described above,
the deformation corresponded to about 10 mG mag-
netic field variation. Precise tuning of the radiofre-
guency to this value results in a spout through which
slow atoms may continuously escape, thus generating
continuous and precisely localized output coupling. Of
course this method requires very stable magnetic fields.
This method has been used by [16], to create a quasi-
continuous atom laser beam.

We have seen, that atom lasers can be built including
all features that make up an optical laser. We can gen-
erate coherent matter-waves taking atoms from a ther-
mal reservoir by irreversible bosonically stimulated
scattering, and we can couple (quasi-)continuous
coherent atomic beams out of asingle mode of the trap.
However, the mode only contains a finite number of
condensed atoms. In order to realize a true cw atom
laser, an incoherent pump mechanism that would con-
tinuoudly refill the BEC being depleted by output cou-
pling still remains to be devel oped.

5.3. Atom Interferometry

The most obvious use of an atom laser is within an
atom interferometer. We already saw in Section 5.2.2
that we get matter-wave interference by just splitting
and recombining a Bose condensate. Andrews’ experi-
ment [195] thus realizes an external degree of freedom
coherent matter-wave interferometer, where the atoms
in the interferometer arms are distinguished by their
being at different locations. It is also possible to build
an interferometer based on splitting the BEC in
momentum space as we will see in Section 5.3.3 [20].
Alternatively, we may consider BEC atom interferom-
eters, where the interfering components are in different
internal states (Zeeman-states [8], hyperfine states [7],
dressed states [212]). We will briefly discuss an exper-
imental implementation of an internal state BEC inter-
ferometer in the following section.

5.3.1. Double species interferometer and phase
measurements. The possibility to coherently couple
two-species Bose condensates, i.e., two BECs that are
distinguishable by their internal degrees of freedom,
suggests their application on an interna-state time-
domain atom interferometer [193]. The phases of the
two internal states |+[evolve according to their respec-
tive chemical potential, ¢.(t) = .t. The phases are
not observable, but their difference Ad(t) can be mea-
sured by Ramsey interferometry. The idea of a Ramsey
interferometer is the following: First, a coherent super-
position of the internal statesis created by coupling the
two internal statesfor ashort time. Thetwo-level Bloch
vector then starts to precess according to the difference
in the chemical potentials. After a while, the internal
states are mixed again, and the Bloch vector is pro-
jected onto the internal state energy axis. The popula
tion distribution between the internal states depends on
the accumulated precession angle. Thus, the Ramsey
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method of separated oscillatory fields converts the
phase measurement into a measurement of populations,
which can easily be carried out experimentally.

Hall et al. [19] started with asingle |1, -1 BEC hav-
ing a well-defined global phase. A first two-photon
microwave-radiofrequency pulse prepared a coherent
superposition of |1, —10and |2, 1[0BECs. With a reso-
nant 172 pulse, they got 50% population in both levels.
The converted and the remaining atoms were not
immediately in the stationary ground-states of their
respective trapping potentials, because they had to
adjust the spatial shape of their condensate wavefunc-
tion to the modified conditions. The smaller partial
atom numbers, a dight change of the scattering length
and of the trapping potentials for the atoms turned into
|2, 1CAEltered the chemical potentialsfor both states. So,
it took some time for the two BECs to relax to their
respective ground states. During atime T, the two-level
Bloch vector freely precessed, and the BECs accumu-
lated a differential phase proportional to the difference
in their chemical potentials. A second 172 pulse now
remixed the components. Finally, the populations in
|1, -10and |2, 10were separately probed via time-of-
flight imaging.

The TOP trap offersthe possibility to precisely tune
the relative displacement of the two clouds. The inter-
penetration can be made considerable and typically
amounts to 20%. The overlap region constitutes the
interfering portion of the BEC interferometer, and its
size determines the fringe visibility. A ssmple model
describes the fringe contrast as a function of the local

densities n _,, . Thefinal population of the |2, 1[state
after completion of the Ramsey sequence reads [19]:

nfadr) = 3 1) + 31 1 (1)
T (0.2)

+ /N )N, 1&r)cos{J’Au(r,t)dt}.
0

Ramsey fringes were recorded [19] by repeating the
whole sequence of BEC creation, Ramsey interferome-
try and destructive imaging with different free preces-
sontimes T. In Eq. (5.2), we assumed an inhomoge-
neous and time-dependent evolution of the local rela
tive phase at arate proportional to the local difference
in chemical potentials Au(r, t). This assumption
accounts for the complicated transient relaxation of the
two partial condensates into their respective ground-
states. The transients should lead to phase diffusion in
the spatial average and engender strong decoherence.
However, in experiment [19] the fringes turned out to
be surprisingly clear and reproducible, thus indicating
lower phase diffusion than naively expected. The relax-
ation typically lasted 45 ms, but even after T = 100 ms
the double BEC system remembered the initial phases
and could interfere. Furthermore, Ap(r, t) depends on
the numbers of atomsin the upper and lower BECsand
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therefore on the total condensed atom numbers. The
high fringe visibility indicates a very good experimen-
tal reproducibility.

Note that phase and atomnumber are noncommuit-
ing observables. Measuring the difference in atom-
numbers of two coupled Bose condensates destroys the
relative coherence and decouples the BECs. Internal
coherence of a BEC means predictable phase between
any two atoms. Atomnumber measurementsyield BEC
number states, but of course this does not diminish the
inherent coherence of the BEC.

5.3.2. Quantum transport and Josephson tunnel-
ing. When two superconductors are brought into con-
tact, a dc voltage that is applied to a tunnel junction
between the superconductors generates an oscillating
current proportional to the electric potential difference.
This phenomenon, called Josephson effect [213], is a
general feature of coupled macroscopic quantum sys-
tems and can be observed e.g., with gaseous Bose con-
densates confined in a double-well potential. Here, the
oscillating quantum current is proportiona to the dif-
ferencein chemical potentials of the BECs.

Anderson et al. [15] have directly observed another
manifestation of Josephson tunneling. They loaded a
Bose condensate into a vertical standing light wave.
Accelerated by gravity, the BEC tunneled from antin-
ode to antinode. Since the tunneling process was coher-
ent, the partial BECs quasi-trapped in the antinodes
were phase-locked and interfered. This feature is in
close analogy to mode-locked lasers, so that the tunnel
array can also be considered a mode-locked atom laser.

Another example for coherent matter-wave tunnel-
ing is the experiment by Stamper-Kurn et al. [126] on
spinor BECs trapped in a focused far-detuned laser
beam (Section 4.2.2). In aweak magnetic biasfield, the
BEC was transferred into a superposition of the spinor
components |F, m:C= |1, 10and |1, OCIwhich were then
separated with a Stern-Gerlach type magnetic field gra-
dient and formed spin domains. Then the magnetic field
gradient was reversed, thus generating a force in the
opposite direction. Since the Zeeman components are
immiscible, the domains repel each other. The energy
barrier is higher than the chemica potential of the
domains. This means that the domains are metastable
against decay into their respective equilibrium posi-
tions. The experiment [126] observed quantum tunnel-
ing of the spinor components through each other and
measured the tunneling rate.

5.3.3. Bragg diffraction. We now turn our attention
again to the external degrees of freedom of the Bose-
condensed atoms and take a closer ook at the interac-
tion of their center-of-mass motion with light. We con-
sider two laser beams with wavenumbers k,, = w/c and
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Fig. 18. Bragg scattering for matter-waves. The figure on
the left shows the geometric arrangement used in the exper-
iments[20, 137, 138]. Short pul ses of Raman beams enclos-
ing the angle 9 and detuned by Aw from one another are
shoneinto the BEC. The figure in the right shows the para-
bolic dispersion relation, which strictly holds only in the
limit of negligible mean-field interaction.

K, +ae ENClOsing an angle 9 (Fig. 18). The light field
amplitude is described by

E(r,t) = Eg[cos(k,, [T —wt)

+ COS(kw+ AmB —((.0"‘ Aw)t)] (O 2)

= E,cos(k,, [ —cot)cos%q 0r — %Aw%,
wherewe defined q = ik, — ik, 4 a- Thetime-average
over an oscillation period yields the light intensity
I(r,t) = lo[1+ cos(q [F —Awt)], (0.3)
which describes a one-dimensional light grating mov-
ing in the direction of g with avelocity that depends on

Aw. A useful approximation for the momentum transfer
at small Awis:

q=2hk,sind/2. (0.9

The interaction process can be understood in two
ways. In position space it may be interpreted as Bragg
scattering, i.e., stimulated Raleigh scattering of the
atomic de Broglie wave at the optical grating induced
by the standing wave and subsequent interference of
the phase-modulated de Broglie sidemodes. Alterna-
tively, it can be interpreted in momentum space as
Compton scattering, i.e., stimulated Raman scattering
between two different motional states of the atoms. The
recently observed Recoil-Induced Resonances (RIR)
[214] are another manifestation of the same process.

Compton picture. In the Compton picture, the
atoms being in the standing wave light field may absorb
photons from any of the two laser modes and be stimu-
lated to reemit the photons into the modes. Let us

COURTEILLE et al.

assume that an atom with momentum p; first absorbs a
photon of frequency w from the laser beam k, and is
then stimulated by the laser beam k, , 5, to emit a pho-
ton of frequency w + Aw and to acquire the final
momentum p; (Fig. 18). Because this is a two-photon
process, its amplitude is proportional to the square of
the light field amplitude, and thus to the light intensity:

HCompton(r’ t) Ol (r, t) Z |pf D]ﬂ)ll +C.C. (05)
pi

The momentum q = p; — p; and the energy #Aw =

p7/2m— p’/2mare transferred to the atom, so that the
atom must follow the Bragg condition:

2
o= 9L+ 20
2Zm m

(0.6)
The Bragg condition (5.7) can aso be fulfilled by
higher-order Raman scattering processes, aswe can see
by substituting g — ng, where 2n is the number of
absorbed and reemitted photons. This general case is
depicted in Fig. 18 for p; = 0.

Bragg picture. In order to explain the scattering
process in the Bragg picture, we choose our reference
frame so that k , = K, ., A, IN EQ. (5.3). In this moving
frame, the standing wave amplitude can be written as
E(z, t) = 2Eycosk,zsinwt. The (single-photon) Rabi fre-
guency Q generated by a single travelling wave laser
beam has been introduced in Eq. (3.4). For large red-
detuned laser frequencies, [A]> Q, the standing wave
creates a light shift modul ation described by

U@ = U0c032 K,z (0.7)
where U, = #Q?A according to Eqg. (3.9). Conse-

guently, the condensate matter-wave develops a spatial
phase modulation according to:

W(z 1) = Wo@explii U1

5 _ (0.8)
= lpo(z)Z;sn(uot/Zﬁ)exp(Zmnsz).

The condensate wavefunction evolves into a superposi-
tion of sidemodes, which are just the diffraction orders
of the Bragg scattering and whose strengths are given
by the Bessel functions 3,,. The diffraction efficiency
increases with laser intensity and with time.

The above description neglects the atomic motion
during the interaction with the standing wave. Thisthin
grating approximation can be satisfied in experiment
by irradiating the standing wave only for very short
times. Thetime scaleis set by the oscillation period of
the atoms in the optical potential valleys generated by
the standing wave via the dipole force interaction. At
the locations of the antinodes, we may harmonically
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approximate the potential and introduce the secular fre-
quencies o,y by g W = ki Uo. The thin grating

approximation holds for laser pulse durations T <
21y, - For longer pulse durations, in the thick grating
limit, the atoms perform on average several oscillations
intheoptical potential during theinteraction time. This
causes periodic focusing (decollimation) and defocus-
ing (collimation), which manifestsitself in aoscillating
Bragg diffraction efficiency.

Bragg diffraction of Bose condensates was first
experimentally observed by Kozuma et al. [20] in the
thin grating limit. They briefly irradiated a standing
wave into atrapped Bose condensate, then released the
BEC from the trap and recorded the momentum distri-
bution with standard time-of-flight imaging. They
observed a splitting of the condensate wavefunction
into the Bragg diffracted modes. The efficiency of the
Bragg diffraction could be made as high as 100%. By
variation of the relative detuning Aw, the diffraction
orders could be selected. Subsequent experiments also
investigated the thick grating limit [215], by applying
the standing wave pulse to released condensates and
arranging for large secular frequencies wyy.

The BEC Bragg scattering technique described
above displays many similarities with acousto-optical
modulators (AOMSs), which are commonly used in laser
optics. However, while AOMs deflect photons passing
through the interaction zone, the matter-wave Bragg
scattering described here is a time-domain process.
This diffraction method constitutes an important atom
optical device that will certainly prove a powerful tool
in many applications. It has already been used to excite
phonons in a controlled way (Section 5.4.2) and to
study the intrinsic phase of a condensate [137, 207]. In
the reference [207], small condensate replica sequen-
tially generated from a large BEC by coherent Bragg
diffraction interfered with each other and yielded infor-
mation about intrinsic phase variations of the BEC. In
[216], the Bragg diffraction scheme has been extended
to demonstrate a time domain matter-wave anal ogue of
the Talbot effect. And in [209], a Bragg diffraction
interferometer has been used to map the autocorrelation
function of a BEC and to image its phase evolving in
time.

5.4. Nonlinear Atom Optics

In classical nonlinear optics the interaction between
matter (e.g., dilute gases) and light is described by
Maxwell’s equations:

P(r,t) = X(E)E(r,t) = XV E+Xx® : EEE+...

DE(r, 1) = ‘%"ﬁ(r,t). ©9)

The electromagnetic field E creates a macroscopic
polarization P, which in turn acts back on the field via
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LIE. Higher order processes like self-focusing, second
harmonic generation, four-wave mixing, etc. are
described by the nonlinear susceptibility x©. These
processes require the presence of a nonlinear medium,
because the polarizability of the vacuum itself is pretty
small. For visible wavelength the photon-photon scat-
tering cross section is well approximated by

4572(973/5)(a/T) (A8 mE c4), which is only on the
order of 103 cm? [217] and very difficult to reach even
with high intensity lasers. In contrast to this, the scatter-
ing cross section for shapeless two-body collisions in
ultracold sodium gases is on the order of 2 x 10? cm?,
so that two-body collisions are frequent processes at
currently available densities and temperatures.

5.4.1. Self-defocusing. Two-body collisions play a
role in coherent matter-wave optics which is very sim-
ilar to that of the nonlinear susceptibility in quantum
optics. Within the mean-field theory, the groundstate
wavefunction of the condensate is described by the
nonlinear Schrodinger equation:

2
[;—irinA + Utrap(r) + g|l.|J(r, t)|2:|l-|J(r’ t) = IJl.|J(|', t),(O.lO)

where g = 414%a/m. The nonlinear term describes the
condensate self-interaction and is anal ogousto the third
order contribution to the polarization in the nonlinear
Maxwell egquations (5.10). If the atomic interaction is
repulsive, the nonlinear term causes the condensate to
expand as far as the trapping potential permits. This
behavior is analogous to the nonlinear optical self-
defocusing in local Kerr media with instantaneous
response. For large condensates, the self-interaction
can be so overwhelming, that the kinetic energy may be
neglected (at least in the center of the trap, where the
density is highest). This approximation defines the so-
called Thomas—Fermi limit.

5.4.2. Dispersion. The nonlinear mean-field inter-
action in aweakly interacting condensate is at the ori-
gin of the phenomenon of dispersion, i.e., the de Bro-
glie wavelength of a single atom with a given momen-
tum p inside the condensate depends on the loca
density. For homogeneous condensates, the dispersion
relation (2.50) can easily be derived from the semiclas-
sical Bogolubov equations (Section 2.6). In the Tho-
mas—Fermi limit, the region inside the condensate has
a nearly homogeneous density, n(r) = n,, so that the
Bogolubov dispersion describes the excitation spec-
trum quite well. For low excitation energies, €.(p) =
p?/2m < gn,, the spectrum is phonon-like (quasi-parti-
cle-like):

Ephon(p) = G, where Cs = /\/gnO/m'

The excitation energy then depends linearly on the
momentum, and density perturbations travel without
spreading inside the condensate at the speed c, of the

(0.12)
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Fig. 19. Bragg spectroscopy of recoil-induced resonances. Figure (a) shows the shift (solid line) and halfwidth (gray area) of the
RIR in the case of particle-like excitations, €,4¢(p) = h x 100 kHz, as a function of density. Figure (b) shows the RIR shift Ae and

Fig. (c) shows the RIR strength (p), i.e., the fraction of atoms deflected into the first Bragg order, for phonon-like excitations,

€phon(P) = h x 1.54 kHz.

Bogolubov Oth sound. In contrast, for high energy exci-
tations, p%2m > gn,, the spectrumis particlelike:

Epart(P) = P772M+gny. (0.12)

Phonon-like collective excitations have been driven
very soon dfter the achievement of Bose—Einstein con-
densation using trap modul ation methods (Section 4.3.1).
The excitation energies were quite low, i.e. in the same
order of magnitude as the trap secular frequencies,
Epnon(P) = hy,,. The de Broglie wavelength of the
phonons is then comparable to the condensate size, so
that the phonon spectrum is influenced by boundary
conditions. It isinteresting to tap other regimes of exci-
tation energies that are free from this limitation. The
newly developed Bragg diffraction technique can be
employed to optically imprint high energy phononsand
even particle-like excitations into the condensate [138]
and thusto investigate the boundary between these two
regimes. Bragg diffraction has been observed earlier
with a two laser beam standing wave arrangement as
splitting of the matter-wave in momentum space [20]
(Section 5.3.3). The energy transfer €,.(p) could be
tuned by adjusting the angle between the two laser
beams according to Eq. (5.7) (Fig. 18). We have aso
seen, that the efficiency of Bragg scattering atoms into
the first diffraction order depends on the fulfillment of
the Bragg condition (5.7), i.e,, Bragg scattering is
vel ocity-selective. One can therefore measure the num-
ber of deflected atoms versus the relative detuning of
the lasers that drive the Raman transition, record the
recoil-induced resonances and call this procedure
Bragg spectroscopy [137]. The spectrum closely
reflects the momentum distribution of the atoms. Since
the mean-field interaction causes a finite momentum
spread of the condensate wavefunction, the shift and
broadening of the RIR reveal detailed information
about the condensate self-interaction (Fig. 18).

For a real condensate, there are several contribu-
tions to the width of the momentum distribution:
(1) Thefinite size of the trapped condensate limits the

width of the momentum distribution according to
Heisenberg's uncertainty relation [44]. (2) The inho-
mogeneous density distribution of the trapped conden-
sate shiftsand smears out the momentum distribution in
Eqg. (5.13). Since thisis an inhomogeneous broadening,
it adds to the other linewidth as a quadrature sum.
(3) The finite length of the Bragg scattering pulse pro-
duces a broadening analogous to the time-of-flight
broadening in atomic beam spectroscopy, which is
inversely proportional to the pulse length. (4) Acoustic
noise may Doppler-broaden the linewidth of the fre-
guency difference of the lasers and reduce the resolving
power of the Bragg spectroscopy scheme. The shifts
and broadenings of the recoil-induced resonances have
been calculated for arealistic condensate density distri-
bution and verified in two experiments, one carried out
in the particle regime [137] and one in the phonon
regime[138].

Stenger et al. [137] performed the particle regime
Bragg scattering experiment, €,..(p) = gny, with coun-
terpropagating laser beams. For this case, the recail
shift for sodium condensates at fulfilled Bragg condi-
tion (5.7) was €,..(p) = h x 100 kHz, which was much
larger than the mean-field energy at typical condensate
densities, gny =g x 5 x 10" cm=3 = hg x 7.3 kHz. The
experiment could closely reproduce the expected shift
and broadening of the RIR shown in Fig. 19a.

Stamper-Kurn et al. [138] carried out the phonon
regime Bragg scattering experiment with laser beams
enclosing an angle of 14°. In this case, the recoil shift at
fulfilled Bragg condition (5.7) was€,.(p) = h x 1.54 kHz,
which was now smaller than the mean-field energy at
typical densities. The results of this experiment were
found in good agreement with calculations of the shift
and strength of the RIR shown in the Figs. 19b, 19c. In
order to understand the density dependence of the RIR,
we first have a look at the spectrum of light scattered
from a homogeneous dilute gas of atoms. If the gasis
nondegenerate, the spectrum mirrorsthe velocity distri-
bution of the atoms. In the presence of condensed
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atoms, photon recoil events that take atoms to an
already occupied state are enhanced by Bose stimula-
tion, and if the atoms do not interact, according to Jav-
anainen et al. [218], the spectrum §p, €) exhibits two
characteristic peaks at € = +¢,(p). Later, Graham et al.
[219] extended the calculations by taking into account
two-body collisions and found the characteristic peaks
at an energy € = +e.,,(p) given by the Bogolubov dis-
persion relation (2.505’:

P, €) = ——8(Eaeg(P) ). (0.13)

€gog(P)

The experiments of Stamper—Kurn and Stenger [137,
138] measured exactly these spectra. However, instead
of looking at scattered photons, they analyzed the
shifts, widths and strengths of the recoil-induced Bragg
resonances. They measured, in particular, the line

strength, S(p) = [S(p, €)de, and the shift from the free

particle resonance, Ae = €g04(P) — €r&(P), as afunction
of the mean-field energy. In order to compare with the
experiment, the formula (5.14) needs to be dlightly
modified to take into account the inhomogeneity of the
trapped condensate. Figures 19b, 19¢ show the shift and
strength of the RIR as afunction of the condensate den-
sity. At low densities, when the excitations are particle-
like, the line shift tends to zero, €g4(P) = €pan(P) —
€e(p), and the line strength tends to its maximum
value, S(p) — 1. At high densities, the excitations are
phonon-like, €go4(P) = Epnon(P) > Erec(P), and the RIR is
shifted towards higher energies, while the line strength
rapidly decreases. The relative weakness of phonon-
like excitationsis due to the presence of correlated pair
excitations. The direct comparison of the two regimes
of excitations thus reveals important information about
correlation effects [138].

It isinteresting to note, that the spectrum is equiva-
lent to the structure factor, which is itself the Fourier
transform of the density correlation function of the con-
densate quantum field. The structure factor playsasim-
ilar rolein the theory of many-body Schrodinger fields
as the familiar Q-function in quantum optics. The cor-
relations are probed by scattering quasiparticles back
and forth:

Sp) O9a,a) +a7,a, +a a5 +a,a, g0  (0.14)

where &, stands for the annihilation of a phonon with
wavevector p.

5.4.3. Second harmonic generation. The elemen-
tary excitations (i.e., small oscillations around the
many-body ground state) discussed in Section 4.3.1 are
well described by a linearized Gross—Pitaevskii equa-
tion. In contrast, large amplitude oscillations are sensi-
tive to anharmonicities induced by the nonlinear mean-
field interaction. Nonlinear effects may result in fre-
guency shifts of the norma modes and mode coupling.

LASER PHYSICS  Vol. 11

No. 6 2001

703

For mode coupling, the anisotropy of the trapping
potential plays an important role. Dalfovo et al. [220]
calculated the excitation frequencies for the normal
modes of cylindrically symmetric traps (w,, w,). The
modes are usually labelled with the projection of the
angular momentum onto the symmetry axis m. The
lowest lying modes are the breathing mode (high-lying
m = 0), the radial compression oscillation with axial
sloshing (low-lying m = 0), and the quadrupolar radia
shape oscillation (m = 2). The oscillations depend dif-
ferently on variations of the trap geometry. For exam-

ple, at the aspect ratio w,/w, = %A/77+5A/145, the

excitation frequencies are shifted such that wy,q,(m=0) =
2w,,(M = 0). Thus, through active control of the trap
aspect ratio, it ispossible to arrange for degeneracies of
the modes where the anharmonic mixing diverges.
Under such conditions, frequency doubling effects
should occur analogous to Second Harmonic Genera-
tion (SHG) in quantum optics.

Second harmonic generation has recently been
observed in the collective dynamics of a Bose-Einstein
condensate by Hechenblaikner et al. [221]. They mod-
ified the potential of their TOP trap by an additional
magnetic field oscillating along the symmetry axiswith
twice the frequency of the rotating bias field. In the
time-average, thistrap has a variable aspect ratio which
can be set by the amplitude of the additional field. Sim-
ilar to earlier experiments [129, 130], the hydrody-
namic mode was excited by sinusoidal modulation of
the rotating bias field amplitude. The response of the
condensate wavefunction, i.e., the shape oscillation,
was observed by standard time-of-flight imaging.
When the aspect ratio of the trap was set to the degen-
eracy condition, the condensate responded nonlinearly
by oscillating with twice the driving frequency.

In contrast to light, the material de Broglie wave
also depends on the particle’ s mass. Therefore, modify-
ing the mass and keeping the momentum fixed modifies
the de Broglie wavelength. Two free atoms can be
coherently coupled to a molecular bound state. The
coupling may be realized through a Feshbach reso-
nance [222] (Section 6.1) or by exciting a Raman tran-
sition with laser beams [223] (Section 6.3). This pro-
cess may also be understood as Second Harmonic Gen-
eration.

5.4.4. Four-wave mixing and phase conjugation.
The idea of phase conjugation with coherent matter-
waves has been proposed by Goldstein et al. [224]. The
authors proposed dropping a condensate onto a cw
standing light wave which wastilted by the Bragg angle
from the horizontal plane. When falling through the
standing wave, a first-order Bragg diffracted BEC
would be generated. This wavepacket would four-wave
mix with the zero-order diffracted BEC and the falling
BEC to create a phase conjugate BEC. Just recently,
Four-Wave Mixing (4WM) has been experimentally
demonstrated. Slightly different from the proposal
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Fig. 20. Four-wave mixing can be illustrated in the laboratory frame (&), in the moving frame defined by p, = -3 (b), and in the
moving frame defined by p; = -, (c) and accordingly be interpreted in different ways (see text).

[224], Deng et al. [21] produced three condensates out
of one right inside the trap using the method of Bragg
scattering described in Section 5.3.3. The scattering
process produced the three condensate parts in the
same region of space, but with different momenta. The
initially overlapping condensates carried out half colli-
sions that nonlinearly mixed the de Broglie waves
before they flew apart.

The temporal evolution of four-wave mixing BEC
wavepackets has been numerically investigated by
Trippenbach et al. [225]. They considered three BEC

wavepackets with the initia atomnumbers N; and
wavefunctions, Ye(r —r;),j = 1, 2, 3, each one being the
solution of a Gross—Pitaevskii equation (GPE) with a
potential centered around r;. Theinitial locationsr; and
the initial momenta p; were chosen to let the three
wavepackets perform full collisions. The evolution of
the total wavefunction Y,(r, t) starting from the initial

1
state Yo(r, 0) = 37, NJWo(r —r;)expp; (1] was

monitored by solving the time-dependent GPE (2.45).
The wavepackets mix due to the nonlinear mean-field
interaction term in the GPE giving birth to new wave-

packets Y, ~ qu}' quqJnexp;'—i p, - r with momentap, =

—p; + Pm + Pn- Mixing configurations like Y g;y; and

qJ}' WY, do not produce wavepackets with new

momenta p, # p;, Pm, P, but describe self-phase mod-
ulation (Section 5.4.1) and cross-phase modulation,
respectively. Only terms that combine atoms from all
three wavepackets can produce new momenta. Further
restrictions on the possible mixing configurations j, m,
n=1, 2, 3 arise from particle number, momentum and

energy conservation laws:

_ 0
N, = -N; + N

3
0 0 0
Nim—Nm = Ny — Ny Kzl(NK Ny) (0.15)
Py = _pj + pm+pn
Pi = =P} + Pn* P

In order to generate three BEC wavepackets with
different momenta, Deng et al. [21] applied two short
Bragg diffraction sequences in rapid succession. The
geometry of the standing wave laser beamsis shown in
Fig. 20a in the laboratory frame. The first standing
wave was generated by lasers k; and k, detuned from
one another, so that the Bragg condition (5.7) was sat-
isfied and the momentum p, = Ak, — %k, was imparted
to the diffracted atoms. The second standing wave was
formed by thelasersk, and k; = —k; and transferred the
momentum p; = 2%k, to the atoms. The durations and
intensities of the standing waves were adjusted to dis-
tribute the atoms in more or less equal parts into the
three momentum states p; = 0, p, and p;. A fourth
momentum state p, was generated by four-wave mix-
ing.

The conservation laws only permit processes that
can be viewed as degenerate 4WM in an appropriate
reference frame. Figure 20b shows the process in a
moving frame defined by p; = —5. Two atoms from
and 5 are bosonically scattered by an atom from s,
into the wavepackets Y, and . Each of the wavepack-
ets Y, and P, sacrifices N, atoms to create the new
wavepacket |, and to increase the wavepacket J,. The
redistribution is coherent. Figure 20c showsthe process
in amoving frame defined by p, =—,. Energy conser-
vation only allows the terms satisfying p, = p;. These
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Fig. 21. False color absorption picture of the atomic density distribution after AWM after 6 ms time of flight. The newly created
wavepacket Y, is smaller than the others (reprinted with permission from [21]).

termsare Y7 Y,z and Y, P, 5. In thisframe, the pro-

cess may be interpreted as Bragg scattering of wave-
packet Y5 by the matter-wave grating formed by (; and
W,. The wavepacket Y, isjust the first-order Bragg dif-
fracted wavepacket. In contrast to Bragg diffraction at
an optical grating (Section 5.3.3), Bragg diffraction at a
matter-wave grating relies on nonlinear mixing by two-
body collisions. The amount of redistributed atoms
therefore depends on parameters like the atomic inter-
action strength, the condensate size, and the collision
time, i.e., the time that the wavepackets spend together
before they separate. Time-of-flight images of the total
condensate wavefunction after 4WM are shown in
Fig. 21.

The occurrence of four-wave mixing was foreseeable
in view of the equivalence between the nonlinear cou-
pling strength g in the Gross—Pitaevskii equation (5.11)
and the higher-order susceptibility x® in nonlinear
optics, which is known to produce such phenomena.
But despite the similaritieswith the optical counterpart,
four-wave mixing with matter-wave is fundamentally
different. Particle numbers must be conserved and the
energy-momentum dispersion relation is different from
the one that holds for massless photons. Furthermore,
while photons generally require the presence of a non-
linear medium to undergo higher-order processes, the
atomic matter-waves mix viabinary collisions.

5.4.5. Spin mixing. In the four-wave mixing
scheme discussed above, the nonlinearly interacting
condensates are distinguished by their different center-
of-mass momenta. Another possibility isto nonlinearly
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mix overlapping BECs in different internal states, e.g.,
Zeeman substates. The experimental feasibility of con-
fining spinor condensates of sodium atoms distributed
over all F = 1 hyperfine statesin the same trap hastrig-
gered extensive theoretical work [28, 128]. Spin-
exchange interactions constantly mix the different spin
components and drive complex nonlinear spin popula-
tion dynamics. For example, two m: = 0 atomsmay col-
lide and change their internal state to one m = -1 and
one me = +1 atom. A recent experiment has demon-
strated, how a condensate (initially in the mgz = O state)
evolvesinto amixture of populations of all three hyper-
fine states and subsequently forms spin domains [8].
However, the observation of nonlinear spin mixingisa
challenge still lying ahead.

5.4.6. Dielectric properties of Bose-Einstein con-
densates. In the preceding sections, we discussed sev-
eral matter-wave effects with Bose-Einstein conden-
sates that were due to their intrinsic collision-induced
nonlinearity. However, regardless of this atom optical
nonlinearity, Bose-condensed gases can also behave as
highly dielectric media for light and be useful objects
for studies in nonlinear quantum optics.

Under normal circumstances, the refractive index of
agas can only beincreased at the detriment of transmis-
sion. However, in agas of laser-driven A-shaped atomic
three-level systems, quantum interference can occur
cancelling out the absorption and leaving transparent
the otherwise opague medium. The phenomenon is
termed Electromagnetically Induced Transparency
(EIT). Inthis system, when both lasers are tuned to res-
onance, the excited state is not populated and can be



706

adiabatically eliminated. Upon tuning one of the lasers,
a dark resonance can be observed whose width is
power-broadened by the laser intensities, if Doppler
broadening, broadening by laser phase fluctuations or
by collisions between atoms can be neglected [226].
Closeto the dark resonance, the dispersion (i.e., thefre-
guency dependence of the refractive index) is very
large. It depends on the width of the dark resonance.
The group velocity for a propagating light pulseis v, =

dn ¢ .
cBw(mp,obe) +oopr0beme% , where n(wyqpe) IS the

refractive index at the probe beam frequency wygpe-
The propagation velocity is dowed down if the disper-
sionislarge [227].

Taking advantage of their sodium BEC apparatus,
Hau et al. [228] produced a dense (n ~ 8 x 10*2 cm™)
gas of ultracold (T ~ 400 nK) atomsin an oblong mag-
netic trap and probed the cloud in situ and time-
resolved. They shone along the long axis of the cloud a
short pulse of circularly polarized probe light reso-

nantly tuned between the levels |F' = 2, m: = —20and

[F =1, me = =10 The transmitted pulse is detected with
a photomultiplier. In the presence of a low-intensity lin-
early polarized laser beam irradiated perpendicular to the
probe beam and tuned between thelevels|F' = 2, m =—20
and |F = 2, m = —=20which dressed the atomic cloud
and kept the probe light from being absorbed, the light
pulse was delayed. If BECswere used, the delay corre-
sponded to a speed of light on the order of only 17 m/s.
This correspondsto an unprecedentedly large nonlinear
refractive index. Inouye et al. [229] later reported light
group velocities of 1 m/sin the context of their experi-
ment on the amplification of light and atomsin a BEC
(Section 5.5.2). It is worth mentioning, that the effect
does not require quantum degeneracy, but rather high
density and low temperature, and asimilar reduction of
the speed of light has subsequently been observed in
hot gases [230]. The group velocity reduction scales
with the gas density and inversely with probe beam
intensity. At low temperature, one can afford lower
probe beam intensity without being dominated by the
Doppler effect.

Such strong nonlinearities may prove useful for a
variety of applicationsin nonlinear quantum optics. An
interesting proposal [231] points out, that strongly
dielectric moving mediamay exhibit detectabl e relativ-
istic effects of light when the speed of light gets com-
parable to the local speed of sound or the flow of mass.
In particular, a vortex flow imprints a long-ranging
topological phase shift on incident light that can be
understood in terms of an optical Aharonov—-Bohm
effect. Thismay prove useful for the detection of quan-
tum vortices in BECs (Section 4.3.4). At short ranges,
vortices should behave similar to gravitational black
holes and deviate light towards the vortex singularity.
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Beyond an “optical Schwarzschild radius,” the light is
trapped by the vortex.

5.5. Coherent Coupling of Optical Fields
and Matter-Waves

5.5.1. Superradiant Rayleigh scattering. An early
example for the influence of the dynamic coupling
between optical fields and matter-waves on the center-
of-mass motion of the material system isthe Free Elec-
tron Laser (FEL). In this device, a combination of peri-
odic magnetic and optical fields causesaspatial density
modulation of arelativistic electron beam. This modu-
lation generates an oscillating current which amplifies
the optical field and increases the density modulation
again, thus initiating a runaway amplification process.
In an appropriate reference frame, the fundamental
mechanism that coherently scatters photons into the
optical field can be understood as cooperative Compton
scattering or Bragg scattering of the particles (i.e., elec-
trons) at a moving standing light wave. This point of
view together with the experimental observation of
recoil-induced resonances in atomic gases [214] trig-
gered afew years ago the idea of an atomic analogue to
the FEL: the Collective Atomic Recoil Laser (CARL)
[232]. In the CARL, photons are coherently redistrib-
uted between the modes of a moving standing light
wave by mediation of the atomic center-of-mass
motion. Cooperative Compton scattering leads to col-
lective atomic recoil and self-bunching of the matter-
wave which results in exponential gain. The recent
observation of Bragg scattering in Bose condensates
brought up the question whether BECs could serve the
purpose of an ultra-cold version of the CARL [29]. The
superradiant Raleigh scattering of laser light by a BEC
seen by Inouye et al. [22] aready shows several fea
tures peculiar to CARL. The long coherence time of
BECs strongly correlates successive Raleigh scattering
eventsvialong-lived quasiparticle excitations. The pos-
itive feedback of these excitations on the laser light
results in exponential gain and directional bundling of
the scattered light.

When an incoming photon with wave vector K is
scattered by a condensed atom into the mode kg, with
ks = kg, this atom receives the recoil momentum g =
fik,—fiky and, whileit propagates with aspeed of afew
centimeters per second through the condensate, it inter-
fereswith the other atoms of the BEC to form a matter-
wave grating. The grating, which is long-lived com-
pared to the scattering rate, now stimulates subsequent
photons from the incoming laser beam to scatter into
the same direction kg and for its part picks up the
recoiled atoms. The process is self-amplifying, i.e., the
number of photons in k. grows exponentialy in time.
The scheme can also be interpreted the other way round
as scattering of atoms into the BEC momentum
sidemode g stimulated by spontaneously scattered pho-
tons and bosonically enhanced by the numbers of
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Fig. 22. Superradiant Raleigh scattering (reprinted with permission from [22]). The time-of-flight images show the momentum dis-
tribution of the condensate after irradiation of asinglelaser pulse polarized perpendicularly to the long axis and having the durations
(a) 35, (b) 75, and (c) 100 ps. For the longer pulse durations, repeated scattering processes give rise to additional peaks.

atoms already being inthe sidemode. Theinversion that
produces the exponential gain is readily understood in
adressed atom picture. The resting BEC and the irradi-
ated laser light form together an excited state that
decays into recoiling atoms and scattered photons. The
photons quickly leave the BEC which maintains the
inversion and permits, in principle, the complete trans-
fer of the BEC into the momentum sidemode. The
spontaneity of the scattering process ensures the irre-
versibility of the gain process.

For their experiment, Inouye et al. produced acigar-
shaped sodium condensate with spatial extensions
Zms = 200 pum and r s = 20 pum confined in a cloverleaf
trap. The BEC was irradiated from a radia direction
with a single linearly polarized laser light pulse tuned
A =-1.7GHz below the D2 line. The variable laser inten-
sity, | = 1-100 mW/cm, and duration, T = 10-800 s, per-
mitted the adjustment of the single-atom far-off reso-
nance Raleigh scattering rateto R= (1/4w)(0,Q%/4A2) =
45-4500 sL. After the application of the laser pulse, the
magnetic trap was switched off and atime-of-flight pic-
ture was taken after 20-50 ms of free expansion
(Fig. 22). Additionally, the scattered light could be
recorded either spatially resolved with a CCD camera
or time-resolved with a photomultiplier. In the follow-
ing, we will discuss some of the observations made in
this experiment.

Raleigh scattering. The total gain depends on the
size of the condensate, i.e., the distance over which sin-
gle-path gain can happen. Mode competition quenches
the scattering in al but the maximum gain directions
[233]. Nonspherical BECsthereforeyield highly aniso-
tropic Raleigh scattering. The competing process of
Raman scattering into different Zeeman sublevelsis not
bosonically stimulated. For cigar-shaped BECs the
gain path is longest aong the symmetry axis, which
results in so-called end-fire modes. Scattering recoils
the atoms and has to stop when all the atoms are trans-
ferred to higher momentum sidemodes. Consequently,
Inouye et al. observed highly directional fluorescence
light bursts along the symmetry axis, whose durations
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were shortened as the irradiated laser intensity was
increased.

Since the end-fire modes enclose a 90° angle with
the incoming laser beam and the frequency of the light
does not change during Raleigh scattering, the scat-
tered matter-wave gets a 45° momentum kick. The
time-of-flight images in Fig. 22 show the momentum
distribution of the condensate after irradiation of asin-
glelaser pulse with various durations. For longer pulse
durations, repeated Raleigh scattering at the higher
momentum sidemodes gives rise to additional peaks.

Superradiance. The processis equivalent to Dicke
superradiance, where the overlapping radiation fields
of a dense sample of excited atomic dipoles stimulate
each other to synchronously emit light, thusleaving the
sample in a coherent superposition state. The total
emission time is reduced to short fluorescence bursts.
While in classical superradiance the sample of two-
level systems evolves into an oscillating coherence of
internal electronic states, in the MIT experiment, we
have a coherent oscillation of translational sidemodes.
Superradiance does not require quantum degeneracy,
but the dipoles must have a long coherence time. Dop-
pler broadening accelerates relaxation. In the MIT
experiment, where the coherence is stored in the
motional degrees of freedom, having long coherence
time is equivaent to having a large coherence length.
BECshave alarge coherence length that correspondsto
their size, while for thermal clouds the coherence
length is just its thermal de Broglie wavelength. This
explainswhy Inouye et al. could not observe superradi-
ance using thermal clouds.

The superradiance was found to be very sensitive to
the polarization of the incoming laser light. Since the
atomswere polarized in axial direction by the magnetic
field of the cloverleaf trap, photons polarized in the
same direction were absorbed and spontaneously
reemitted according to the (torus-shaped) dipole radia-
tion pattern for Ttradiation, i.e., not in axial direction.
On the other hand, if the laser beam was polarized per-
pendicular to the long BEC axis, the (bow-tie-shaped)
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dipole radiation pattern for o* radiation supported
superradiance.

5.5.2. Matter-wave and light amplification. The
superradiance experiment of Inouye et al. reaizes a
matter-wave amplifier along thelinesdescribed by Law
et al. [234] and Moore et al. [235]. The momentum
sidemodes which they observed may be regarded as
amplified vacuum fluctuations. However, the proof that
the amplification process is coherent, i.e., that the
original matter-wave has a well-defined phase relation
to the amplified matter-wave was still lacking. This
proof has recently been provided by two experiments
by Kozumaet al. [23] and at the MIT [24, 229].

In extension of the superradiance experiment, the
MIT group seeded the matter-wave amplifier with a
very small condensate (~0.1% of the total condensate)
thus substituting the quantum fluctuations in their role
of input wavepacket. The seed condensate was pro-
vided by a matter-wave Bragg diffraction pulse (Sec-
tion 5.3.3). It interfered with the main condensate to
form a matter-wave grating which was then amplified
by a subsequent Raleigh scattering pulse. The gain in
atom number for the seed mode could be set between
10 and 100 by controlling the intensity and duration of
the Raleigh pulse. Inouye et al. also demonstrated the
coherence of the amplification process by setting up a
Ramsey type active atominterferometer scheme whose
one arm consisted of the amplified seed condensate and
the other arm of a reference condensate created from
the original condensate by Bragg diffraction. The
observation of interference proved the coherence of the
amplification process.

Kozuma et al. chose a similar approach. They pro-
duced an elongated rubidium condensate in acloverleaf
trap and, in contrast to the MIT group, irradiated the
superradiance and Bragg diffraction pulses into the
long axis of the condensate after releasing it from the
trap. They reduced the superradiant gain of their system
so much that spontaneous quantum fluctuations were
not amplified, produced a seed condensate wavepacket
by Bragg diffraction (~6.5%) and showed that this was
amplified to up to 66% of the total BEC by a Raleigh
scattering pulse. They could also demonstrate interfer-
ence between the amplified and the original BEC wave-
packets in a Mach—Zehnder type atom interferometric
setup [207]. In atraditional Mach—Zehnder atom inter-
ferometer, awavepacket isfirst split with aTv/2 interac-
tion pulse, thus recoiling half of the atoms and leaving
the other half unaffected. A subsequent Tt pul se reverses
the momentum, so that the wavepackets move towards
each other. A final 172 pulse recombines the compo-
nents and produces interference, provided every inter-
action was really coherent. Kozuma et al. used Bragg
diffraction interaction pulses in their Mach—Zehnder
interferometer with an essential modification: The first
T2 pulse consisted of a combination of a Bragg pulse
which produced the seed condensate and a superradi-
ance pulse which amplified it to asize corresponding to
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half the BEC. The observation of interference thus
proved that thefirst composite 17 2 pul se maintained the
coherence, that the long-range order was preserved for
the amplified BEC and that it was phase-locked to the
seed BEC. An important drawback for matter-wave
amplifiersand atom lasers (Section 5.2.3) isthe limited
reservoir of atoms. The amplification imperatively
stops when all the atoms of the BEC have been trans-
ferred into the amplified momentum sidemode.

The atom optical devices listed in Section 5.1.1 are
all passive devices. In contrast, the phase-coherent mat-
ter-wave amplifiers discussed above actively stimulate
the atoms to scatter into the amplified mode. It isworth
pointing out the analogy between this scattering pro-
cess and four-wave mixing. While matter-wave 4WM,
which may be viewed as bosonically enhanced redistri-
bution of atoms between momentum sidemodes medi-
ated by the mean-field, involves four atoms (two in the
input and two in the output channel) and quantum opti-
cal 4WM, which may be viewed as coherent redistribu-
tion of photons between light modes, involves four
photons, the process underlying the superradiant
Raleigh scattering takes place between two atoms and
two photons. In al three cases, bosonic stimulation

plays akey role.

We have seen in the superradiance experiment, that
the Raleigh scattered light is stimulated into the end-
fire modes. The process is self-amplifying and can be
used as a light amplifier for optical seed pulses. In a
subsequent experiment, Inouye et al. [229] demon-
strated the amplification of light pulses. The occurrence
of Rabi oscillationsin the temporal behavior of thegain
showed that the gain process was coherent.

5.5.3. Quantum optics with atoms. The intrinsic
coherence of Schrédinger fields implies the possibility
of “exotic” quantum correlations. Laser light is, nor-
mally, best described by a coherent or Glauber state.
But other quantum states of light are possible, i.e,
squeezed states, Schrodinger cat states, states with sub-
Poissonian photon distribution, e.g., pure number or
Fock states, and even single photon states. All these
states have been abserved in ultrahigh finesse microma-
sers. A mathematically very similar system is the Hil-
bert space of the motion of a single particle in a har-
monic trap, e.g., anion stored in aPaul trap [175]. Non-
coherent motional quantum states have been observed
by Wineland et al. [176]. Quantum correlations have
also been studied theoretically in atomic Bose-Einstein
condensates, and there are propasitions on how to cre-
ate noncoherent states of BECs [27, 236, 237]. (Note
that noncoherent state BECs are not less coherent, but
contain more complicated quantum correlations than
Glauber state field distributions.) This field of investi-
gations may be called “quantum atom optics’ in anal-
ogy to thefield of quantum optics dealing with the non-
classical features of light.

At the interface between the macroscopic world and
the microscopic quantum world, Schrédinger cat states
LASER PHYSICS Vol 11
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are epitomized by new theories on quantum decoher-
ence. Schrodinger cat states are coherent superposi-
tions of multi-particle quantum states. A perfect cat
state can be written as |N, OCk |0, N[Ji.e., all particles
are in a superposition of two states of an arbitrary
degree of freedom, e.g., coordinate, momentum or inter-
nal excitation. Because of their large scale, mesoscopic
coherent quantum objects like Bose condensates are
ideal testing grounds for studies of fundamental ques-
tions on quantum entanglement, quantum measure-
ment, and decoherence. Unfortunately, big Schrodinger
cats are extremely sensitive to decoherence. Proposals
to generate such states in BECs [27, 236, 237] have
been reexamined by Dalvit et al. [238] who also sug-
gested severa measures to master the decoherence
problem. The decoherence rate yy generally depends
on the “macrascopicity” N of the quantum state and its
contact with the environment. Therma collisions
(occurring at arate y,,) are the main reason for deco-
herence in a BEC cat, Yge ~ N?Yo [238], but Raleigh
scattering and three-body recombination aso contrib-
ute. Inthe extreme case of a perfect cat state, the coher-
ence is destroyed by scattering of a single atom, since
its detection tells the state of all atoms. It is worth
emphasizing that Schrédinger cat states should not be
confused with the beamsplitter states discussed in Sec-
tion 5.2.3, where every single atom has the option of
being in one of two states, (|1, Ok |0, 10N. Beamsplitter
states only involve single-particle correlations and are
readily produced by Bragg scattering techniques.

The perfect cat state exhibits maximum entangle-
ment and is, in this respect, similar to Einstein—Podol-
ski—-Rosen (EPR) and Greenberger—Horne-Zeilinger
(GHZ) states. Such states of several entangled particles
are currently investigated in the context of quantum
computation and have recently been realized with sin-
gleions[239] and with micromasers [240]. Controlled
collisions in optical lattices may offer new opportuni-
ties for entangling neutral atoms and implementing
schemes for coherent quantum operations [241]. How-
ever, while for computational purposes it is necessary
to show up with a scheme where the fundamental reg-
isters (called qubits) can be individually addressed, the
delocalized Bose-condensed atoms do not lend them-
selves to individual manipulations. Still it is conceiv-
able that new ideas that make use of the mesoscopic
coherence of BECs will emerge from the paradigm of
coherent entanglement and quantum control between
BECs and laser modes.

Thetheory describing the coherent coupling of opti-
cal quantum fields and Bose-Einstein condensates
encompasses the classical domains of quantum optics
and atom optics as limiting cases. This theory is in
many aspects similar to optical cavity-QED theories,
and the analogy seeds new ideas about cavity atom
optics, entanglement between atomic and laser beams,
and optical control of BECs [28]. As an example: in
quantum optics the Optical Parametric Amplifier
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Fig. 23. Feshbach resonance in collisions of ground-state

85Rb atoms [12]. Theatoms collidein thef = 2 + f = 2 chan-
nel (scattering wavefunction ugy;). A vibrational bound

state of thef = 3 + f = 3 channel has almost the same energy
(wavefunction u,eg). AS the energies are tuned to resonance,

the wavefunction u,e is resonantly enhanced.

(OPA) generates correlated photon-photon states. Sim-
ilarly, aswe have seen in the superradiant Raleigh scat-
tering experiments, the coherent interaction between
light and BECs creates entangled atom-photon states
[233]. The range of possible applications is wide and
may include tests of Bell’s inequality, quantum cryp-
tography and quantum teleportation.

CHAPTER 6.
COLLISION RESONANCES

The mean-field interaction of ultracold dilute
atomic gases is dominated by binary s-wave collisions.
In the shapeless approximation, the collisions can be
modelled by a single atomic constant, the scattering
length, which measures the low energy phase shift of
the relative de Broglie wave of the atoms during a col-
lision process. The scattering length determines the
magnitude of the elastic and inelastic collision rates.

However, the scattering length may be manipulated
with optical [242] or microwave [243] radiation fields
or, close to Feshbach collision resonances, with exter-
nal magnetic fields [244]. Feshbach resonances were
first predicted for nuclear systems [245], and have
recently regained much attention in the context of
Bose-Einstein condensation. They permitted the con-
densation of anew atomic species (Section 6.2) and are
currently investigated in the context of free-bound cou-
pling and the creation of molecular BECs (Section 6.3).

6.1. Feshbach Resonances in 8°Rb and 2Na

Feshbach resonances are collision resonances that
occur when the energy of a colliding channel coincides
with the energy of avibrational bound state of a poten-
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Fig. 24. Magnetic field dependence of the scattering length

close to the strong Feshbach resonance near 156 G in 85Rp
atoms. The scattering length is positive within alarge inter-
val.

tial that correlates with a higher lying asymptote
(Fig. 23). If the bound state and the free atoms have dif-
ferent magnetic momenta, the resonance condition may
be tuned via external magnetic fields exploiting the
Zeeman-effect. When a Feshbach resonance is crossed,
the scattering length goes through asingularity (Fig. 24).

The complex spin-structure of the akalis results
from a combination of exchange, hyperfine and Zee-
man interaction and gives rise to a multitude of energy
levels, with a good chance of having one or more
Feshbach resonances. Verhaar and coworkers [246,
247] performed coupled multi-channel calculationsand
found Feshbach resonances at experimentally accessi-
blefield strengths in 8Rb and 2Na.

There are several ways to detect Feshbach reso-
nances. The first way is using Photoassociation Spec-
troscopy (PA). PA is a frequently used tool to explore
the level structure of excited molecular states by irradi-
ating alaser tuned between the colliding channel and a
vibrational bound level of the excited state potential
[248]. Close to a Feshbach resonance the colliding
wavefunction amplitude is enhanced and therefore its
Franck—Condon overlap with the excited state wave-
function, and the photoassociative transition rate gets
larger. Since the excited molecular state preferentially
decays into the dissociation continuum, where the
atoms have high kinetic energy, the transition rate may
be monitored via trap losses. This method has been
employed to detect abroad Feshbach resonancein ®Rb
near B = 160 G with 6 G width [12].

A second method is based on the fact that the el astic
cross section and therefore the collision rate in an
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atomic gas are both proportional to the square of the
scattering length in the limit of very low temperatures.
Thisyields a simple recipe for probing Feshbach reso-
nances: One drives a dense cold cloud out of thermal
equilibrium and simply measures the rethermalization
speed. It takes on average three collisions per atoms to
rethermalize a sample. Close to the Feshbach reso-
nance the rethermalization speed should be drastically
enhanced. This method has provided an improved mea-
surement of the location of the 8Rb Feshbach reso-
nance[249], which in turn has been utilized to calibrate
the calculations of the ®Rb potentials and to enhance
their precision to alarge extent. On the other hand, the
influence of the Feshbach resonance on the collision
rate suggestsits use to control and improve evaporative
cooling of atomic clouds.

A third method is based on the influence of the scat-
tering length on the mean-field energy of Bose-Ein-
stein condensates. In fact, the scattering length is the
only atomic parameter showing up in the Gross-Pitae-
vskii equation. It governsthe shape and size of the BEC
wavefunction, the BEC dynamicsand of courseall non-
linear interactions. The effect of a Feshbach resonance
on BECs has been studied in 22Na[11]. Unfortunately,
this experiment al so showed the occurrence of inelastic
collision processes close to the Feshbach resonance
leading to a strong depletion of the condensate. This
will most likely limit the practical use of thisresonance
in sodium.

6.2. Bose—FEinstein Condensation in 8°Rb

The zero-field scattering length of the ®Rb isotope
in the ground-state F = 2, mg = -2 is a, 1= —4003g
[12]. The negative scattering length inhibits the forma-
tion of stable Bose-Einstein condensates with this
atomic species. However, in proximity to a Feshbach
resonance the scattering length is very sensitive to
ambient magnetic fields, B (Fig. 24), which can alter its
value and even its sign.

The JILA group, led by Wieman, recently reached
the quantum degenerate regime with #Rb [250] operat-
ing in a regime of positive scattering length. Efficient
evaporation is hindered by a deep notch in the elastic
scattering cross section at collision energies around
350 pK, apeculiarity of #Rb, and by inelastic two- and
three-body collisions being very frequent at some
regimes of the scattering length. Cornish et al. [250]
avoided these difficulties using a relatively wesak trap,
® = 21 x 13 Hz, to reduce the atomic cloud density and
by following a sophisticated evaporation path. The low
density slowed down the evaporation and required a
long magnetic trap lifetime. The first evaporation step
was performed in the high-field wing, at B = 250 G, far
from the Feshbach resonance. When the sample was
cooled to 2 pK, the sign of the scattering length was
reversed and its absolute value reduced, a, (B) =
290ag, by moving the magnetic field strength towards
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the Feshbach resonance to B = 162.3 G (Fig. 24). This
further reduced the inelastic collision rate. The evapo-
ration was now pursued until the condensation thresh-
old was approached with 10° atoms. While the conden-
sate formed, inelastic loss processes rapidly reduced
the trapped atom number to 10* at typically 15 nK tem-
perature and 10* cm3 density. The BEC lifetime was
about 10 s.

Size and shape of the condensate depend on the self-
energy and thus on the scattering length. Tuning the
magnetic field across the Feshbach resonance changes
the condensate shape between the limits of an ideal gas
Gaussian density distribution and a Thomas—Fermi
regime parabolic distribution. Cornish et al. recorded
pictures of the condensate with 1.6 ms absorptive time-
of-flight imaging, determined the scattering length
from the shape of the BEC, and confirmed the magnetic
field dependence shown in Fig. 24. At the magnetic
field strength B = 156.6 G, the scattering length climbs
to a, ,{B) > 10000ag, and the measured condensate
peak density yielded na® = 0.01. In this regime, the
dilute-gas assumption na® < 1 begins to break down,
and effects beyond the mean-field approximation, like
characteristic shifts in the frequencies of collective
excitations, may be observed.

When the self-energy was reduced by tuning the
scattering length from a positive regime away from the
Feshbach resonance into a regime where the scattering
length isnegative (Fig. 24), i.e., beyond B = 166.8 G, the
BEC exhibited an abrupt dynamical behavior. The BEC
shrank until it collapsed gecting a burst of hot atoms. If
we compare to Hulet’s experiment (Section 3.2.1) which
relies on the ensemble analysis of collapsed conden-
sates, we find that the ability to control the value and
the onset of the a < O instability greatly facilitates stud-
ies of the collapse dynamics. Also, we expect that the
successful realization of BEC in #Rb taps awhole new
field of possibly very interesting investigations with the
scattering length as an additional, dynamically tunable
degree of freedom.

6.3. Molecular Bose-Einstein Condensates

Recent theoretical investigations [26, 222, 251-
253] have shown, that the physics of Feshbach reso-
nances is considerably richer than that of an altered
effective scattering length. Feshbach resonances pro-
vide afree-bound coupling between the two-colliding-
atoms continuum state and a quasibound vibrational
molecular state that has some analogy to Second Har-
monic Generation (SHG). When the Feshbach reso-
nance is excited in a Bose condensate, the quasi-mole-
cules are predicted to form a molecular BEC. The
atomic and the molecular BEC are coupled via inter-
condensate tunneling of atom pairs. The system may
even exhibit Josephson oscillations as a signature of
this novel type of quantum tunneling. Free—bound cou-
pling can alternatively be established by driving two-
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Fig. 25. Free-bound—bound two-photon photoassociationin
87Rb. While two 2S5, f = 1, mx = -1 ground state atomsin

the hyperfine state are colliding, they may undergo a photo-
associative Raman transition to the bound vibrational state
v=-2,1=0, F =2, mg =-2located 636.0094 MHz below
the ionization threshold. The intermediate excited stateis v,

J=0at 12555 cm™ of the Og_ potential connected to the

2S,,,-?Py;, asymptote. Thelevels are chosen to optimizethe
Franck—Condon overlap.

photon Raman photoassociation transitions [223, 254].
This system closely resembl es the Feshbach resonance
system and may generate molecular BECs and Joseph-
son oscillations between atomic and molecular BECs
aswell.

The possibility of using incoherent PA to convert
large amounts of free atoms to low-lying vibrational
levels of ultracold groundstate molecules has been
pointed out by Band et al. [255]. Ultracold molecules
have recently been produced in such photoassociation
schemes [256]. On the other hand, the equilibrium
yield of coherent Raman PA depends on the entropies
of the coupled systems [223]. In athermal atomic gas,
the (quasi-)continuum of dissociated atomic states
(they are till confined in a magnetic trap) has a much
larger entropy than the discrete spectrum of vibrational
molecular states. Therefore, the balance of the coher-
ent free-bound coupling has to be on the side of the
continuum, i.e., molecules dissociate more frequently
than they associate. Quantitative estimates of the PA
rates have to thermally average over transition rates (as
opposed to transition amplitudes). As a consequence,
coherent processes, even STImulated Raman Adiabatic
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Passage (STIRAP) transitions, have negligible molec-
ular yield. (In short, STIRAP consists of a counterintu-
itive pulse sequence of the two frequenciesinvolved in
the Raman process.) However, as the atomic cloud
approaches quantum degeneracy, the dimensionality of
the phase space is reduced to alarge extent (a BEC has
zero entropy) and the coherent free-bound coupling
should transform a considerable amount of condensed
atoms into a molecular BEC. In specific schemes, e.g.,
by quickly removing the moleculesfrom theinteraction
region [254] or by using two-photon photoassociative
STIRAP pulses [257], it should be possible to produce
molecules in a controlled manner with unity yield. The
formation of molecules within a condensate can be
understood as a Bose-stimulated chemical process. The
dynamics of this processisdriven by quantum statistics
rather than by chemical forces between individual
atoms.

A possible system to study such phenomenais®Rb
(Fig. 25). Two-photon transitions to very weakly bound
vibrational molecular Rydberg states have been
observed in adark MOT [258] and later even in BECs
[259]. A narrow linewidth of down to 1.5 kHz of the
Raman dark resonance, only observed with quantum
degenerate gases, is a clear indication of coherent cou-
pling. The narrow dark resonance permitted the mea-
surement of the binding energy of the molecular state,
E = 2mh x 636.0094 MHz, with an unprecedented
resolution only limited by the inhomogeneous spatial dis-
tribution of the atoms and their self-energy. The mole-
cules were produced at rest, because the Raman process
does not transfer momentum. Molecular condensates
may formin the groundstate of the trap confining the con-
densate, provided the dark resonance width is inferior to
the trap secular frequencies. Unfortunately, fast indastic
decay into lower vibrationa states limits the lifetime of
the molecular Rydberg statesto less than 1 ms.

CHAPTER 7.
CRITERIA OF BOSE-EINSTEIN CONDENSATION

The phenomenon of Bose-Einstein condensation
involves several rather delicate concepts, such as coher-
ence and gauge-symmetry breaking. In literature, these
concepts are very often misinterpreted. Therefore we
fedl it is necessary to give an accurate and detailed
description of the principal notionslying in the founda-
tion of the considered phenomenon.

One generaly implies that the Bose—Einstein con-
densation is a macroscopic occupation of a single
guantum state, usualy of the ground state, as it was
suggested by Bose[1] and Einstein [2] who considered
this phenomenon for ideal gases. For noninteracting
atoms, the meaning of single-particle quantum statesis
well defined. This, however, is not aways the case for
interacting atoms. In order to formulate more precisely
what the Bose-Einstein condensation actually is,
severa criteria are employed. Here we give a careful
analysis of these criteria, of their mutual interrelations,
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and of their relation to the original idea[1, 2] of amac-
roscopic occupation of the ground state.

Intuitively, one expects that the condensation in a
system of N bosons occupying volume V can occur
when the thermal wavelength A+ becomes much larger
than the mean interatomic distance a, that is,

E _ |:|2T[ﬁ2 |:|1/2
AT a Grkam ’

where m, isthe atom mass; T, temperature. At the same
time, the characteristic interaction radius, r;,;, hasto be
much smaller than the mean interparticle distance

<1, A

(7.2)

%t <1, rnOlad, (7.2)

the interaction radius being of the order of scattering
length a.. In the other case, strong interaction between
atoms could depl ete the condensate or even compl etely
destroy it. For the density of particles

_N_
p=y 0a’,

the above conditions can be written as

p)\i > 1, prignt < 1. (7.3)

Inequalities (7.1) and (7.2), or (7.3), are the expected
conditionsfor the occurrence of the Bose-Einstein con-
densation. The discussion of sufficient conditions is
given in the following subsections.

7.1. Einstein Criterion of Condensation

The statement of a macroscopic occupation of a
guantum state [2] can be formalized as follows. Let an
orthonormalized basis {¢,(r)} be given composed of
wave functions corresponding to single-particle quan-
tum states labelled by a multi-index n. Field operators
can be expanded in this single-particle basis as

W(r) = andn(r), (7.4)

with the coefficients

a, = (¢, lIJ)EJ'<I>F§(f)LIJ(r)O|F-

A physical quantity is called macroscopic if it is pro-
portional to the average number of particles

N=[NO= > @lan (7.5)

being the statistical average of the number-of-particles
operator

Nquﬂ(r)qJ(r)dr.

The quantity DaianD is the occupation number of a
guantum state n. The occupation istermed macroscopic
LASER PHYSICS Vol 11
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if &EanD is proportional to N. In equilibrium systems,
it isthe single-particle ground state, i.e., the state of the
minimal single-particle energy, that can become mac-
roscopically occupied, which means that the number of
particles in the ground state,

No = Cagad] (7.6)
can become proportional to N. This can be stated more
rigorously by means of the limit

. N
lim —=2> 0.
N 5 o

(7.7)

Condition (7.7) defines precisely what one actualy
implies when talking about the macroscopic occupa
tion of a quantum state.

However, the criterion of condensation (7.7) has
several weak points. First of al, there is an ambiguity
in choosing asingle-particle basis{$,(r)} which all the
following consideration is based on. Such abasis natu-
rally arises and is well defined for ideal gases [260],
while for interacting particles it is, in general, not
uniquely defined. Hence the single-particle ground
state and the related occupation number are not well
defined for a system of interacting atoms.

Some delicate problems may appear in defining the
limit (7.7), as was shown for an exactly solvable model
(Michoel and Verbeure [261]). This means the follow-
ing. The number of particles in the ground state (7.6)
can be defined as

4]
N, = |i = T
0 2IslinoNa, N Zmnanﬂ
n=0
It happens sometimes that

lim limN; = 0 (7.8)
N-owd-0

although
lim lim Ns> 0. (7.9

850N

It is also worth emphasizing that, when considering
the criterion (7.7), one usualy tacitly assumes that the
macroscopic occupation occurs solely for one quantum
level, i.e., for the ground state level. But, in general, the
situation may happen when several quantum states, or
even an infinite number of them, become macroscopi-
cally occupied so that

lim
N_.ooN

for several quantum numbersn.

@la = congt>0 (7.10)

7.2. Penrose Criterion of Condensation

Penrose [262] and Penrose and Onsager [263] criti-
cized the criterion (7.7) stressing that “this criterion has
meaning for noninteracting particles only, because sin-
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gle-particle energy levels are not defined for interacting
particles.” They suggested ageneralization of thiscrite-
rion valid for interacting particles aswell. The general-
ization is based on the definition of the eigenvalues of
the first-order density matrix

pa(r, 1) = ' (r)y(r) (7.12)

The eigenvalues of the matrix (7.11) are given by the
eigenproblem

J’pl(h F)oa(r)dr = yaa(r).
The largest eigenval ue defines the norm
P4 = supys.

The Penrose criterion of condensation reads

1P
imN o
This criterion can be further generalized by intro-
ducing the notion of order indices for reduced density
matrices (Coleman and Yukalov [264, 265]). For a
k-order reduced density matrix

Pe(r 1. M F1..1y)

(7.12)

. . (7.13)
= (r)... Y (rde(ry)...p(r )
the order index is defined as
. In|p
o= lir m%, (7.14)

where [|p isthe norm of the matrix p, with elements

(7.13). Different types of ordering appearing inthe sys-
tem of bosons can be classified [266, 267] as follows:

o, =0, no order or short-range
0 < 0y <k, even mid-range

0, =k, even long-range (7.15)

[g] <0y <k, total mid-range

a, =k, total long-range,

where [X] is the entire part of x. This classification
encompasses three kinds of possible condensation:
Even condensation [268-276], with o, = k, when the
groups of even numbers of atoms are condensed but
there is no single-particle condensate. Mid-range con-
densation [277-280], with [k/2] < ay < k, when there
arises algebraic mid-range order but there is no long-
range order. The Bose-Einstein singe-particle conden-
sation corresponds to the case o, = k.

Criteria based on the consideration of norms of
reduced density matricesarerather general. However, it
is not always easy to find the eigenval ues of the density
matrices for interacting particles.
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7.3. Off-Diagonal Long-Range Order

The concept of off-diagonal long-range order (Yang
[281]) can be formulated as follows. If the limit

1im py(r1,15) = po >0,
wherer, = |r,—r,|, iISnot zero, then there occurs Bose—
Einstein condensation, and p, isthe condensate density.
Really, for the first-order density matrix one may write
the spectral resolution

Pu(rs2) = % Vadn(r) 97 (r2),

(7.16)

(7.17)

in which vy, are the eigenvalues and ¢,(r), the eigen-

functionsof p, . Notethat y, play therole of the average
occupation numbers of the single-particle states
labelled by n. If one assumes that the considered sys-
tem is uniform, then the main contribution to the
sum (7.17), asr,, — oo, is made by the term contain-
ing the largest eigenvalue y, and the ground-state func-

tion ¢o(r) = 1/./V, so that

P1(r1 r2) = Yodo(r )5 (ro), (7.18)

Hereit isnot necessary that ¢, be the average W [of the
field operator. To befinite, the limit (7.18) requires that
Yo ~ N. Hence the consideration is reduced to the Pen-
rose criterion of condensation (7.12).

Thus, the long-range order defined by the limit
(7.16) is a sufficient condition for the occurrence of
condensation in a nonuniform system. But, in general,
thisisnot anecessary condition, and it is not applicable
to nonuniform systems. For example, for a system of
atoms localized in a confined region, say inside a trap,
one has

r12—> 0,

lim¢,(r) = 0. (7.19)

Therefore,

lim p,(ryr,) =0 (7.20)

lp - ®
irrespectively of the values of y,. Condition (7.16)
excludes the existence of Bose-Einstein condensation
in confined systems.

7.4. Broken Gauge Symmetry

The concept of broken gauge symmetry is often
used as a sufficient condition for Bose-Einstein con-
densation. The standard way of breaking gauge sym-
metry is by means of the Bogolubov prescription [282]
for the field operator which is presented as the sum

W(r) = Wo(r) +d(r) (7.21)
of anonoperator term ), and an operator () such that

Wo(r) = Op(r)0  Oh(r)d= 0. (7.22)

COURTEILLE et al.

The nonoperator term , corresponds to condensate
atoms in a single-particle ground state, while the oper-

ator ) describes atoms outside the condensate.
Because of Egs. (7.21) and (7.22), the statistical aver-
age of the field operator

Qp(r)dzo (7.23)

is not zero, which manifests the broken gauge symme-
try as far as the average pLlis now not invariant under
the gauge transformation

W(r) — €y(r),

where a isan arbitrary real number.

In order to understand better what are the assump-
tions under which the prescription (7.21) is valid, it is
useful to look attentively at the original ideas of Bogol-
ubov [282], which we shall follow below. Let us select
an orthonormalized basis {$,(r)} of single-particle
states. Thefield operator can be expanded over the cho-
sen basis as

W) = T = Tad ), (729

witha, = (¢,, ). From the Bose commutation relations

[w(r), $'(r)] =8(r—r')
one has
[am &l = 8.

Define the condensate and noncondensate operators

Wo(r) =a00o(r),  B(r) = adn(r).

nz0

(7.25)

From the commutation relations for a,, it follows that

[Wo(r), WH(r)] = do(r)d5(r).

For treating Y, as a nonoperator term, it is necessary
that this commutator would be asymptotically small, at
least, in the thermodynamic limit, when

N—»OO V—»OO’

N
— — const.
\

This is really the case for uniform systems for which
one hasthe basis{¢,(r)} formed of plane waves

oulr) = 7.

N

Then one gets
[Wo(r), WY = & —0 (V—=o). (726)
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However thisis not yet sufficient for announcing , a
nonoperator term. Consider the operator a, = (¢, ).
Taking into account that

(60, §) = zan(q)O!q)n) =0,

nz0
we have

ag = (9o, Wo).
This shows that if ), is not an operator then a, is also
such. Hence, one should have [a,, ag] =0, which con-

tradictsthe commutation relation [ay, ag] =1.Thenone

needs to make an assumption that the ground state is
macroscopically occupied, so that

[ajaJON. (7.27)
Only after this, one can say that the finite value of the

commutator [ay, aﬁ] isnegligibly small as compared to
the macroscopic number (7.27),

[20. 2] 1
T N

[ajaq]
Asis evident, the assumption (7.27) is nothing but the
Einstein criterion of condensation (7.7). In thisway, the
Bogolubov prescription (7.21) presupposes Bose-Ein-

stein condensation. Moreover, this prescription
assumes that the condensation occurs solely in one

guantum state. In general, the commutator [,,, qu] can

become asymptotically small for severa states. For
instance, the commutator

W), Yl = g —-0

is asymptoticaly, asV — o, small for any k. Never-
theless, one does not announce that al i, are nonoper-
ator terms. Vice versa, all Y, with k # 0 are treated as
operators satisfying the standard Bose commutation
relations. This means that the Bogolubov prescription
segregates one ground-state level that is assumed to be
macroscopically occupied, so that relation (7.27) holds
true; and al other levels are not occupied macroscopi-

caly, sothat [&)a,]~1fornz0.
To be practical, the Bogolubov prescription (7.21)
requires one more assumption that is always made. One

treats () as a small perturbation about the mean-field
value Y, = WO Thisisequivalent to the assumption that
amost all atoms are condensed,

N—Ng
N
In this way, breaking gauge symmetry by means of

the Bogolubov prescription (7.21) presupposes the
existence of Bose-Einstein condensation. This pre-

—+0 (N— o). (7.28)

< 1.

(7.29)
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scription provides a practical tool for calculations
under the assumption that aimost all atoms are in the
condensed state. But breaking gauge symmetry is not
necessary for the validity of the Einstein criterion (7.7)
or Penrose criterion (7.12), that is, it is not necessary
for the existence of Bose—Einstein condensation.

It is also important to note that the Bogolubov pre-
scription (7.21) is not applicable for strongly interact-
ing particles whose interactions are described by non-
integrable potentials. Breaking gauge symmetry by this
prescription requires that the interatomic interactions
are given by an integrable potential ®(r), such that

‘J’(D(r)dr‘ < co. (7.30)

Here the integration is over finite V. This is necessary
since using the prescription (7.21) yields the appear-
ance in the Hamiltonian of the term

S [1Wo(r)(r =) () ar o,

with nonoperator functions |Ygy(r)| and |y(r")|. This
term diverges if the interaction potential does not sat-
isfy condition (7.30), hence, gauge symmetry cannot be
broken for such systems.

7.5. Condensation in Confined Systems

When atoms are confined in a box or by means of
external confining potentials, then al single-particle
functions ¢,(r) tend to zero, asr — o, because of
which the limit (7.20) of the first-order density matrix
is zero, which tells that there is no off-diagonal long-
range order. However, it is possible to weaken condi-
tion (7.20) considering, instead of the exact limit, an
asymptotic behavior at large ry,, when the density
matrix can be approximately factorized as

P1(r, r2) Udo(r)o5(r2), (7.31)

which tells that there exists a kind of long-range order
[262, 263, 283]. The factorization (7.31) may appear if
the distance r,, is much larger than the mean inter-
atomic distance a, but much smaller than the effective
size |, of the confined system, that is, in the region

(7.32)

The meaning of the inequality r,, > ais evident, and
the inegquality r,, << |, arises because the wave function
of a ground state is always more localized than the
wave functions of excited states. Consequently, at the
distance ry, ~ |, the excited-state wave functions are
much larger than ¢,, and the factorization (7.31), in
general, will not occur. Thus, in confined systems,
strictly speaking, there is no long-range order but there
can be quasilong-range order, when the density matrix
factorizes, asin Eq. (7.31), in the region (7.32).

Gauge symmetry in a confined system cannot be
broken. Thus, for employing the Bogolubov prescrip-
tion (7.21), one would need that the commutator

a<<rg, <.
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[P0, W] be zero. However, thisis not so. For instance,

expanding the field operator, according to Eq. (7.24),
over an oscillator basis, we have

00lr) = 2, 0" op L o )
from where
[Wo(r ), Wo(r,)]
[m 0 Mo, 2”2)% (7.33)
T T O 2% 0

which s, certainly, not zero.

The absence of long-range order and of broken
gauge symmetry in confined systems is in agreement
with the known fact that there are no sharp phase tran-
sitions in such systems, although Bose-Einstein con-
densation can occur without being a sharp phase transi-
tion but agradual crossover [41, 284-287]. During this
crossover al thermodynamic characteristics behave
smoothly and no discontinuities appear, although some
guantities can change very rapidly. Since al thermody-
namic characteristics change in a completely smooth
way, the identification of a specific critical temperature
is problematic. It isthe standard situation for crossover
phenomena that the crossover temperature is not
uniquely defined, but its definition, anyway, can be
done by assigning the crossover temperature to the
maximum of one of thermodynamic functions
[288, 289]. In the case of Bose condensation in con-
fined systems, one can relate the condensation temper-
ature to the maximum of specific heat [41].

If gauge symmetry in confined systems is, strictly
speaking, never broken, isit then admissible to use the
Bogolubov prescription (7.21) in some approximate
sense? It seems that when the mean interatomic dis-
tance a is much smaller than the effective system size
lo, then the confined system could be treated as almost
infinite. For atoms confined, e.g., in a harmonic poten-
tial, the required inequality is

f
MyWy’

The effective volume of the confined systemisV ~ IS ,

hence |, ~ N3, Therefore, an admissible description of
the effective thermodynamic limit in this case could be

|o

(7.34)

N
= — const.

0

N—»OO'

(7.35)

|0—> o,

Because of therelation (7.34), wy, ~ |57, thence wy, ~ N-22.

Consequently, the thermodynamic limit (7.35) can be
presented as

3/2

N— o, wy— 0, Nw,;  — const.

(7.36)
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-3/2

The ground-state wave function ¢, ~ |, ", that is ¢, ~
N-Y2, Then the commutator (7.33) is
1 1
[Wo(r). Wolr2)] D=0 (7.37)

0

which showsthat it is asymptotically zero, asN —» oo,
for any r, and r,. This means that the Bogolubov pre-
scription (7.21) can have the sense of an approximate
relation for large confined systems satisfying condition
(7.34). A dlightly different definition of the effective
thermodynamic limit for trapped atomswill be givenin
Section 11. It is worth recalling that breaking gauge
symmetry is a sufficient condition for Bose—Einstein
condensation but not necessary [290]. The Einstein cri-
terion (7.7) or Penrose criterion (7.12) do not require
any broken symmetry. The occurrence of Bose-Ein-
stein condensation in a confined system, say in atrap,
can be noticed by observing the density of atoms,
which can be presented as the sum

p(r) = po(r) +p(r),

where the first and second terms correspond to the den-
sity of atoms in a ground state and in excited states,
respectively,

Po(r) = Noldo(r)|?,

(7.38)

B() =Y Noloo(r)[".

nz0

(7.39)

According to the Einstein or Penrose criteria, conden-
sation happens when Ny ~ N, which does not involve
any mentioning of gauge symmetry. In experiments, the
occurrence of condensation is manifested by the
appearance of a narrow distribution py(r) above the

wider p (r). Because of the normalization

J'p(r)dr =N, Ny+ ZNn = N,

n#0

(7.40)

the ground-state density po(r) becomes noticeable
when N, ~ N. Although condensation in atrap isagrad-
ual crossover, the latter can be rather sharp reminding a
phase transition occurring at a point.

CHAPTER 8.
COHERENT ATOMIC STATES

One usually connects the occurrence of Bose-Ein-
stein condensation with the appearance of coherencein
an atomic system. This sounds reasonable since ine-
qualities (7.1) and (7.3) can be interpreted as the condi-
tions of coherence. In order to understand better the
relation between condensation and coherence, it is hec-
essary to give a rigorous definition of coherent states
and to study their main properties. This is done in the
following subsections that are based on [291].
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8.1. Definition and Main Properties

We consider the field operators i(r) and Y'(r) satis-
fying the Bose commutation relations and defined on
the Fock space . A state h O % is called a coherent
state if it is an eigenvector of the annihilation operator

Y(r)h = n(r)h. (8.1)

The function, n(r), playing the role of an eigenvalue,
can be called the coherent field. Thelatter isassumed to
be normalizable with the norm ||n||= (n, n) defined by
means of the scalar product

(n,n") Ejn*(r)n'(r)dr.

The coherent state h is not an eigenvector of the cre-
ation operator. But thereis a useful property

h'w'(r) = n*(r)h’ (8.2)

that follows from the Hermitian conjugation of Eqg. (8.1).
The state h, being a vector of the Fock space %, is pre-
sentable as a column

h={h(ryra....r)k=012..1}. (8.3
From the definition (8.1) one can derive that
he(ry,ro...,r) = %ﬁﬂ(ﬁ)- (8.9
it

Requiring that the state (8.3) be normalized to unity,

00

h'h = Z(hnhi) =1,

i=1

(85)

where
(h;, h) Eﬂhi(rl, [ ..., F)%drdr,...dr;,

one gets the normalization constant
01 O
Cd = expC5(n,n)o.
0 0

Two different coherent states are not orthogonal since
the product

+ D l 1 1 1 ID
h'h = eXp[ré(n,nH(n,n)—Q(n,n)D (8.6)
O 0

is not zero.
It is possible to introduce time-dependent coherent
states

h(t) = U(t)h (8.7)
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by means of the evolution operator U (t), which is a

unitary operator satisfying the Schrodinger equation
iﬁdﬂtO(t) = HU(1), (8.8)

where H is a Hamiltonian depending, in general, on

time. The generalization of definition (8.1) isthe eigen-
problem

w(r)h(t) = n(r, Hh(t). (8.9)

Similarly to the time-independent case, one may derive
that h(t) has the structure of the column

Co(1) & O
l len(r,,t)E-

The eigenproblem (8.9) can also be presented in the
form

h(t) = (8.10)

Y(r,t)h = n(r,t)h (8.12)
involving the time-dependent field operator
w(r,t) = 0°@w(r)0). (8.12)

If the evolution of the system is prescribed by the
Schrédinger equation (8.8), then the coherent field
n(r, t) is not arbitrary. Let us take the system Hamilto-
nian in the standard form

#°V?
H = [u'(r,t)]- +U(r, t) (W(r, t)ar
I [ 2my } (8.13)

#3[01(E DU DO - r)Y(r, OY(r. Herdr,

with the interaction potential ®(—) = ®(r). The evolu-
tion prescribed by Egs. (8.8) and (8.12) yields the
Heisenberg equation

., 0
i w(r, ) = [w(r, 1, H],
which is also equivalent to the variational equation
L og(r,t) _  OH
if = - .
CUE T ()

With the Hamiltonian (8.13), the evol ution equation for
the field operator (8.12) is

ASW Y = HWWE,Y, (814)
where
#2v?
H =— U(r,t
(V) 2mo+ (r,t) 615

+J’<D(r ) (r, Hw(r, tdr.
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Multiplying Eq. (8.14) by h* from theleft and by h from
the right, and using definition (8.11), yields the evolu-
tion equation for the coherent field

.. 0
Iﬁa—tn(r,t) = H()n(r, t), (8.16)
with the effective nonlinear Hamiltonian
2v72
H) = -2+ u(r, )
2m (8.17)

+J'<D(r —r)n(r, t)%dr.
The nonlinear Schrddinger equation (8.16) isthe exact

equation for the coherent field.

The norm of the coherent field has not yet been
specified and, in general, it can be arbitrary. It is conve-
nient to introduce the coherent field ¢(r, t) normalized
to unity, so that

n(r,t) = Jko(r, 1),
where K is an arbitrary positive number and

(n.n) =x, (¢,9) = 1.

Then Egs. (8.16) and (8.17) are transformed to the non-
linear Schrodinger equation

(8.18)

iﬁ(%q)(r,t) = H($)d(r, 1) (8.19)
with the nonlinear Hamiltonian
- #°V?
H(p)=- +U(r,t
(9) o (r,t) (.20)

HK[@(r=r)lo(r, Hldr

Notice that Eq. (8.19) has nontrivial solutions for the
coherent field only if the interaction potential isintegra-
ble in the sense of condition (7.30). A system of parti-
cles with a nonintegrable interaction potential cannot
possess coherent states.

8.2. Sationary Coherent Sates

If the external potentia U(r, t) = U(r) does not
depend on time, then the nonlinear Schrédinger equa-
tion (8.19) has stationary solutions of the form

_ ol
Onlr,1) = 0o(r)eXPZEt,
inwhich ¢,(r) and E,, are defined by the eigenproblem

H(9n)dn(r) = Enda(r). (8.22)

The stationary solutions ¢,, labelled by a multi-index n
can be called coherent modes.

The Hamiltonian (8.20) is nonlinear, hence cannot
be Hermitian. Therefore the set of solutions{¢,(r)} to
the eigenproblem (8.22) does not necessarily form a

(8.21)
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complete orthonormal basis. Actually, even in the case
of a Hermitian operator in an infinite-dimensional
space, the set of its eigenvectors does not aways form
such a basis [292, 293], contrary to the case of Hermi-
tian operators in finite-dimensional spaces.

Nonlinear eigenproblems are usually solved by an
iterative procedure, as it is done for self-consistent
mean-field problems like Hartree or Hartree-Fock
equations [294, 295]. In the process of such solutionsit
is often possible to preserve the orthogonality of eigen-
vectors, at least approximately in the sense of the ine-
quality

(0m O0) <1, m#n.
The latter, because of Eqg. (8.22), is equivaent to the
condition

[(Adm ¢0) — (dm Ad,)| < |En—El,

if mznand H¢ = H (¢)¢. Here, with the Hamiltonian
(8.20), we have

(Hq)m’ q)n) _((I)m’ |:|q)n)
= K[ORMP =r)[9m(r)]" = [0n(r)[ 16 o(r)drdr.

Thus, the set {$,}, in genera, is not orthogona
although can often be made quasiorthogonal, so that
(@) ¢)] <€ 1if m#n. Themodes ¢, can always be nor-
malized to ||¢,|| = 1.

One may notice that the eigenproblem (8.22), with
the Hamiltonian (8.20), defines the coherent modes up
to a phase factor €% with an arbitrary rea phase a.
Therefore, the general solution of the eigenproblem
(8.22) writes

Pra(r) = do(r)e”

The phase a is an unobservable random variable uni-
formly distributed in the interval [0, 2m), which has to
be averaged over when evaluating the expectation val-
ues of observables [296-298]. The random global
phase a should not be confused with a local phase of
the coherent made ¢,,, which can arisein the process of
solution of the eigenproblem (8.22) and which is deter-
mined by this eigenproblem.

Keeping al numbers k, n, and a fixed, we have a
pure coherent mode

Nena = KO (r)E”.
Then, Egs. (8.3) and (8.4) define a pure coherent state

(0= a<2m). (8.23)

(8.24)

k
0c, 0
heng = O, 8.25
Kna %jljlnm(“)g ( )
LASER PHYSICS Vol.11 No. 6 2001
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in which

- o 1.0
Co = expp SKE
The pure coherent states are not orthogonal since
h:nu hK'n'C('

8.26
= eXIOD— (K+K)+«/W(¢n,¢ e g, (620

But they are asymptotically orthogonal if either K — oo
or K' — oo, For example, if the pure coherent modes
(8.24) are normalized to the number of particles N =
K =K', then the product (8.26) is

MnaPma = €XP{—N+ (¢, 04)NE“ ™} . (827)

This shows that two different pure states, for which
either n#n' or a # a', are asymptatically orthogonal in
the sense of the limit

. +
Ilm hNnahNn'a' -
N - o

SunOuar- (8.28)

Thus, the set { hy,} Of pure coherent statesformsanor-
malized asymptotically, with respect to N — oo,
orthogond basis. Thisbasisisasymptoticaly, asN —» o,
compl ete providing the resolution of unity

S rnaMing =1 (N — ). (8.29)

Thelatter equality isto be understood in the weak sense
as an equality for the matrix elements

h;:lnaihNn'(x' = 6nn'6ou:(' (N - oo), (830)

Hence the set { hy,,} can be treated as an asymptoticaly
complete and orthonormalized basis, when N — .

8.3. Quantum Coherent Averages

For an operator A, we can define the pure coherent
average

D&D(nﬂ = h:na AhKna (831)

with respect to the pure coherent states (8.25). Thusfor
the field operator, one has

[ (NTkna = VKO (r)€°, (8.32)

which tells us that the usage of pure coherent states
breaks gauge symmetry. The first-order density matrix
factorizes as

W (MW ne = 0" (r)kna

For the particle density operator
Ar) = w'(Nw(r),
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one gets
(1 )Ckna = K[0a(r)]". (8.34)
And the density-density correlation function is
(r)N(r) 4
(r)n(rt (8.35)

= m(r)umu [ﬁ(r‘)umcx + 5([’ - I") m(r)umcx-
This function, in general, is not factorized. However,
there is no great sense to consider correlations at one
point. It is meaningful to consider the correlations only
forr #r'. Inthelatter case, the correlation function (8.35)
is factorized.
The average number of particlesis

(NCkna = K, NEJ’ﬁ(r)dr. (8.36)

And the average of the Hamiltonian (8.13) writes

AV }p (r)dr

Hila = [0 (r)[ o

QR —r')|¢n(f')|2drdr',

where a dtationary externa potential is assumed.
Employing the eigenproblem (8.22), the average
energy (8.37) can be rewritten in two other forms,

HO,,,, = KE,— 2J’|(|) (r)| D(r —r") |, (r' )| drdr’,
(8.38)

IKE, + _[¢ (-3 [ntr)ar.

As has been explained above, the phase a in the
coherent modes (8.23) and (8.24) is an unobservable
random variable that has to be averaged out when cal-
culating the expectation values of operators. This
means that the pure coherent averages (8.31), strictly
speaking, do not correspond to observable quantities.
Thelatter areto be defined asthe averages over theran-
dom-phase coherent state [296]

hyn = { Mo T [0, 270)} (8.39)

being the set of al pure states h,,,, With the random
variable a. The corresponding coherent averageis

(HOg = iV

2n

~ _ i ~
mD(n = 2_,_[-[ Mnuda . (840)

Then, for instance, for the field operator one has

[p(r)n = 0, (8.41)

which shows that for the coherent state (8.39) gauge
symmetry is not broken. This sounds rather reasonable
since the field operator does not pertain to the algebra
of observables [291, 299]. One more reason for the
absence of broken gauge symmetry isthat Eq. (8.41) is
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in agreement with the conservation of the number of
particles[300]. The absence of broken gauge symmetry
does not preclude the first-order density matrix from
being factorized as

[ (MW )Tk = KOX(1)da(r"). (8.42)
But the form (8.33) does not hold true,
(W) O (N (), (843)

because of Eq. (8.41).

The operators A pertaining to the algebra of
observables contain the products of even numbers of
field operators, with equal numbers of creation and
annihilation operators. Therefore, for such operators, the
coherent averages (8.40) coincide with the pure averages
(8.31). For example, the average particle density

(r)Tkn = K|do(r)|?

is the same as the density (8.34). The density-density
correlation function

[A(r)A(r)n
= [(r ) (') + O(r —r*) (),

is analogous to that of (8.35). Again considering the
correlations for different pointsr # r', we see that the
correlator (8.44) factorizes. One may aso notice that
the second term in the right-hand side of Eq. (8.44) can
be omitted when Kk > 1, since on average it is much
smaller than the first term. This follows from the inte-
gration

(8.44)

IEﬁ(r)ﬁ(r')Dmdrdr' = K> +K.

For any two operators A(r) and B (r"), the correlator
defined through the coherent average (8.40) alwaysfac-
torizes if r # r'. When both these operators pertain to
the algebra of observables, the factorization takes the
form

CA(r)B(r)okn = CA(r)kn [B(r")kn,

if r #r'. However, if one of these operatorsis not from
the algebra of observables, then the correlator does not
have the form (8.45), athough the factorization does
occur. For instance, the density matrix (8.42) is factor-
ized, though ¢,(r) isnot proportional to W (r)L],, which
is zero according to Eq. (8.41). The factorization prop-
erties of the coherent averages (8.40) are not connected
with gauge symmetry breaking. The latter occurs only
for the pure average (8.31), with afixed global phase.
However, to fix a phase that is random and cannot be
measured |ooks unphysical.

(8.45)
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8.4. Satistical Coherent Averages

For a system of many particles, statistical state is
presented by a given statistical operator p defining the
expectation values of operators as statistical averages

CAO = TrpaA. (8.46)

Sincethetrace operation does not depend on the chosen
basis, we may take for this purpose the basis { h,,,} of
the coherent states (8.25). Then the statistical average
(8.46) is presented as

00 2TT

A0 = ZIJ’EEADdeda,

noo

(8.47)

where [..[J, IS the pure coherent average (8.31). For
an equilibrium statistical state, the Gibbs statistical
operator is
[’:‘) - exp{ _B(H —UNz} ' (848)
Trexp{-B(H - uN)}

where B = (kgT)~* and the chemical potential p can be

found from the condition CNO = N. The statistical oper-
ator (8.48) represents the grand canonical Gibbs
ensemble.

In the thermodynamic limit, N — oo, the coherent
states become sharply peaked around the average num-
ber of particles[301]. If we make areasonable assump-
tion that, integrating over the norm k = ||n||in the aver-
age (8.47), the main contribution, when N — oo,
comes from the term with K = N, then the value (8.47)
is asymptotically close to the statistical coherent aver-
age

2n
AL = > i [ Alkna do (8.49)
n o
defined as atrace over the restricted Hilbert space
¥y =L{Nyndt (8.50)
being a linear envelope of the coherent basis { hyn} -
Since the observable quantities
(NChna = N, THOyug = Enn (8.51)

do not depend on the unobservable random phase a,
and because of the asymptotic orthogonality (8.28), the
average (8.49) can be written as

(AT = z P AN, (8.52)
with the coherent statistical weight
—BE
Prn = _&P(PE) (8.53)
S exp(-BEwn)
n
LASER PHYSICS Vol. 11 No.6 2001
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and with the coherent average

2mn

~ _i ~
(A hn = ZTJ (A hnada. (8.54)
0
The averaged field operator is zero,
Qp(r)tk = 0, (8.55)

showing that gauge symmetry is not broken. The den-
Sity matrix

W' (r)w(r)h = N> Pund7 (Nda(r)  (8.56)

does not factorize as well as the density-density corre-
lation function

CA(r)A(T)Th = N5 prnldn(r)9n(r)[. (857)

But astemperature tends to zero, and 3 — oo, then the
system tends to the ground-state energy level

Eno = MINEy,, (8.58)
n
so that the weight (8.53) becomes
Pnn —= 0o (B —= ). (8.59)

Then the correlators (8.56) and (8.57) asymptotically
factorize. For example, the density-density correlator is

[A(r)A(r)Ch = Oh(r )k h(r ),

when 3 — . The atom density

()0 =Ny Prnln(r)f°

can be written as

(A(r)Ch = Npnol9o(r)) + NS prald(r)l”. (8.60)

n#0

At high temperatures, when the first term in Eq. (8.60)
isnegligible, one may say that the system isin thermal
state. The temperature T,, at which the coherent first
term becomes noticeable, characterizesthetransition to
the coherent state. Since the ground-state wave func-
tion is better localized in space than the wave functions
of excited modes, the increase of the first term in the
sum (8.60) can be noticed asthe appearance of anarrow
space distribution above the wide therma cloud
described by the second term. With lowering tempera-
ture below T, the sharp coherent peak described by the
first term grows while the wide thermal distribution
corresponding to the second term diminishes. At zero
temperature, all atoms are concentrated in the ground-
state coherent mode. In this way, Bose-Einstein con-
densation can be understood as a transition of atoms
from excited single-state coherent modes to the
ground-state coherent mode.
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Note that the coherent states (8.25) and (8.39) are
not the eigenvectors of the system Hamiltonian (8.13).
However, this does not preclude the statistical average
(8.46) from satisfying the limiting relation

: 1. B A
im, Jim = Jim § e
And there is no contradiction between the many-parti-
cle coherent states (8.25) or (8.39) not being the eigen-
vectors of the system Hamiltonian and the ability of
atoms to condense into a single-particle coherent
mode (8.23).

8.5. Correlation Functions and Coherence

Asfollows from the previous subsection, an equilib-
rium system of atoms can becometotally coherent only
in the thermodynamic limit at zero temperature. At
finite temperatures or for afinite number of particles, a
system of atoms can be only partially coherent. Since
the level of coherenceis directly related to the strength
of correlations between atoms, thislevel can be charac-
terized by the behavior of correlation functions.

The simplest correlation function is the dimension-
less first-order density matrix

5= DO
C(r, r') = —=2mdo—tn)
Np(r)p(r)
where p(r) = [h(r)O. This function has the properties
C*(r,r')y = C(r',r), C(r,r)=1.

Averaging over the coherent states hy, according to the
definition (8.40), we have

(8.61)

[(r)hn = 0; (8.62)
and the density matrix writes
A (W) = NOF(r)oa(r). (8.63)

Hence, if the average in the function (8.61) is assumed
as the coherent average (8.40), then

|C(r,r)|=1 (coherence) (8.64)

for al r and r'. But for the statistical average (8.46), in
general,

IC(r,r)l <1,

with the equality occurring only forr =r".

An effective radius characterizing the length of
strong correlations between atoms defines the coher-

coh .
J’IC(O, r)|dr

(8.65)

(8.66)
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If thisradius is less than or comparable with the mean
interatomic distance,

reon<a (chaos), (8.67)

then atoms are not correlated, which can be ascribed to
chaotic behavior. When the coherence radius is much
larger than the distance a but much smaller than thelin-
ear size of the system,

a<<ryg,<<L (local coherence), (8.68)

then a large number of atoms are mutually correlated,
although this number is much smaller than the total
number of atoms in the system. And when the coher-
ence radiusis of the order of the system size,

ron~L (global coherence), (8.69)

then almost all atoms in the system are correlated and
practically all particles condense into a coherent mode.
The correlation function (8.61) describes the property
of the system, which is called first-order coherence.

The correlation function

" (r )" (r ) p(r)g(r )0
p(ri)p(ry)

characterizes second-order coherence. If the average
here is defined as the coherent average (8.40), then

(8.71)

for any r, and r,. The opposite case corresponds to the
statistical average (8.46) under the condition that parti-
clesare not correlated, so that the average in Eq. (8.70)
can be simplified using the Wick decomposition. The
latter yields

Cy(ry,ry) =

(8.70)

Cy(ry,ry) =1 (coherence)

Cy(ry,ry)=1+|C(rq, ry)? (chaos). (8.72)
For this chaotic state,
Cy(ry, rp) >1 (chaos). (8.73)

Combining Egs. (8.71) and (8.72), for the coinciding
arguments we have

(1, coherence

Cy(r,r) = chaos (8.74)

Similarly, the third-order coherenceis described by the
correlation function

Cs(ry,rors)

_ )0 e W) wr)ur)n @79)
p(r)p(ra)p(rs) '

In the case of the coherent average (8.40),

Cy(rq, rorg) =1 (coherence). (8.76)
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While for the statistical average (8.46), under the
assumption that atoms are not correlated, one may
employ the Wick decomposition resulting in

Cy(ry, rprs) = 1+|C(rl,r2)|2+|C(r2,r3)|2 (8.77)
+|C(r3,r1)|2+2ReC(r1,r2)C(r2,r3)C(r3,r1).

In the two opposite cases, we get

(l, coherence

Cs(r 1) = I, chaos

(8.78)

The same way can be followed for characterizing
higher-order coherence by means of the correlation
function C,(...) defined analogously to Egs. (8.70) and
(8.75). For the coinciding arguments, one finds

(1, coherence

Cr,r,...,r) = %(I chaos

(8.79)

One may notice that, if the system is coherent, thisis
reflected in the correlators of all orders, so that

Clry,ry ...,r ) =1 (coherence).

Thence, it isnot compulsory to distinguish between dif-
ferent orders of coherence, but it is sufficient to use just
one word “coherence.” In the intermediate case, when
thereis neither complete coherence nor pure chaos, the
properties of correlators of different orders can be dif-
ferent. Then one could distinguish between different
orders of particle correlations.

Correlation functions can be defined not only for
field operators but also for any operators. The correlator

for two operators of local observables, A(r) and B(r),
satisfies an important limiting property

CA(r,) B(r,)0= CA(r)dB(r,)d (8.80)

whenr;, —» oo, which is called the principle of corre-
lation weakening [300, 302]. This property holds only
when both operators represent local observables. Since
the field operators do not correspond to observable
quantities, the correlator [T(r,)Y(r,)Odoes not need to
be factorized into the product W'(r)Mp(r,)0) as
r,, —= oo, although it may factorizein adifferent form,
asin Eq. (8.42).

CHAPTER 9.
MEANING OF GROSS-PITAEVSKII EQUATION

The nonlinear Schrodinger equation (8.19) is an
exact equation defining the coherent field ¢(r, t) that
can aso be caled the coherent wave function. In the
nonlinear Hamiltonian (8.20), one has to specify the
external potential U and the interaction potential &. For
trapped atomic gases, these potentials are usually mod-
elled as a harmonic confining potential and a contact
Fermi potential, respectively [30, 31]. This concretiza-
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tion is given below, where we also discuss the differ-
ence between the exact equation (8.19) for the coherent
wave function and some approximate equations for
broken-symmetry order parameter introduced by
means of the Bogolubov prescription (7.21). For con-
creteness, we set the normalization parameter kK = N.

9.1. Coherent Wave Function

The external potential U(r, t) in the nonlinear
Hamiltonian (8.20) may, in general, consist of two
terms, one describing a stationary trapping potential
that is due to the trap used and another term corre-
sponding to time-dependent perturbation superimposed
on the stationary part. The trapping potential is usually
modelled by a harmonic oscillator,

m
u(r) = 7°(cofx2+m§y2+mfzz), (9.1)

with the frequencies defined by the confining fields of
the trap.

The density of trapped gasesis aways small, so that
the effective range of the two-body potential describing
interatomic interactions is much smaller compared to
the interparticle distance a ~ p~3. Then the interatomic
potential can be assumed to act locally and be charac-
terized entirely by the s-wave scattering length ag
[303-305]. This means that, under the condition

lag

=<1, plal’ <1, (9.2)

the interaction potential can be presented in the Fermi
form

_ 28
d(r) = Ad(r), A= atth’ . (9.3)

In typical experiments with 8Rb and 22Na, one reaches
the density p ~ 10* cm3, the scattering length being
a,~5x 107 cm, hence a/a ~ 102 and pa’ ~ 105, In
the case of “Li, one has p ~ 10*? cm3, with the scatter-
ing length a;, ~ =10~ cm, so that |ag[/a ~ 102 and
plasf ~ 10°. In the Bose-Einstein condensation of
atomic hydrogen [99], the density of condensed atoms
isp ~ 2 x 10* cm3, while the scattering length of H is
a, ~ 6.5 x 10° cm, from where a,/a ~ 10 and paf ~
10719, Thus, inequalities (9.2) always hold true.

With the trapping potential (9.1) and the interaction
potential (9.3), we get the nonlinear Hamiltonian

ﬁV

(9.4)
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Then Eqg. (8.19) for the coherent wave function takes
the form

in9® = [A(9) + 1, (95)

where V = V(r, t) is a time-dependent perturbation
potential.

From the mathematical point of view, Eg. (9.5) isa
nonlinear Schroédinger equation. Thisis an exact equa
tion for the coherent wave function. Similar equations
can be derived in the mean-field approximation for the
order parameter associated with the condensate[31]. In
the latter case, one cals such equations Gross-
Ginzburg—Pitaevskii  equation or Gross—Pitaevskii
equation, since such equations were considered by
these authors [306-310].

9.2. Condensate Order Parameter

The order parameter associated with the Bose—Ein-
stein condensate is commonly defined as

Wo(r, t) = Lb(r, 1)1 (9.6)

that is, asthe statistical average of afield operator. This
definition implies that Bose-Einstein condensation is
accompanied by broken gauge symmetry, which is usu-
ally done by means of the Bogolubov prescription (7.21).
Substituting the Bogolubov-shifted field operator Y =
Yo +  into the Heisenberg equation (8.14), and aver-
aging the latter, one has

hV

atLIJo = — 2mo + UDUJ0+A(|UJ0| Wo

(9.7
+ 20 P o+ i 5 + ' He0),
where the dependence of functions on the space-time

variablesr and t, for brevity, is dropped.

Equation (9.7) for the condensate order parameter
(9.6) isexact. However, it is too complicated to be use-
ful. To simplify it, one may invoke the mean-field
approximation

P00 o 'O o+ 20" o
which, because of [ 0= 0 yields
' pgo = o.
Then Eq. (9.7) for the order parameter slightly simpli-
fies becoming

2452

., 0 _DhV

+ UD‘UO
9.8)
+ A(|qu|ZUJ0 + ZE‘E’T‘LEU ot [P ),

which corresponds to the Hartree-Fock—Bogolubov
approximation.
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Sometimes one makes an ad hoc assumption that
the anomalous averages [ Oare much smaller than

the normal ones [ '{) I Then, dropping the former in
Eqg. (9.8), one comes to the Popov approxi mation

DhV

Iﬁat% -0 2m,

+U
O¥o (9.9)

+A(|w0| + 2|]'|J UJD)qu,

considered first by Popov [311].

The Hartree-Fock—Bogolubov approximation is
self-consistent; however, it leads to the appearance of a
gap in the spectrum of elementary excitations [312].
Since in reality there is no gap, this approximation is
not satisfactory. The Popov approximation yields a
gapless spectrum of elementary excitations; but this
approximation is not self-consistent because the

anomalous averages [P Oare, in general, of the order
of or even much larger than the normal averages [312,
313], thus, O Ocannot be neglected when gauge sym-
metry is broken. Moreover, the Popov approximationis
unstable with respect to the formation of vortices with
negative energy [312]. Therefore, the Popov approxi-
mation also cannot be accepted as satisfactory.

As discussed in subsection 7.4, the Bogolubov pre-
scription (7.21) is meaningful under the assumption of
small depletion of condensate, which is expressed by
inequality (7.29). In the extreme case, one may assume
that al particles are condensed, so that all the averages

0§ Oas well as 0§ Ocan be omitted. Neglecting all
these averages, corresponding to noncondensed atoms,
is often termed the Bogolubov approximation. Then
Eq. (9.8) becomes

_ D_ﬁ 2y?
6tlIJO 0 2m,

It is this approximate equation (9.10) for the order
parameter (9.6) which is commonly called the Gross—
Pitaevskii equation. If, similarly to Eq. (8.18), we
change the normalization of the order parameter by
means of the replacement

Wo(r,t) = J/Noo(r, ),

then Eqg. (9.10) takes the same form as Egs. (8.19) or
(9.5) for the coherent wave function. The difference is
that the nonlinear Schrddinger equation (9.5) is an
exact equation for the coherent wave function, while
Eq. (9.10) is an approximate equation for the conden-
sate order parameter. Equation (9.5) exists irrespec-
tively of whether gauge symmetry is broken or not,
while Eq. (9.10) presupposes broken gauge symmetry.
The mathematical structure of both Egs. (9.5) and
(9.10) is the same, being that of the nonlinear
Schrodinger equation. What is different is their physi-
cal interpretation. However, it is admissible to accept a

(9.10)
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generalized point of view and to define the Gross-
Pitaevskii equation asanonlinear Schrddinger equation
describing asystem of Bose atoms, irrespectively of the
interpretation of the solution to this equation.

9.3. General Anisotropic Case

To study the properties of the Gross—Pitaevskii
equation, it is convenient to introduce some notations
simplifying the following consideration. When all fre-
guenciesin thetrapping potential (9.1) aredifferent, we
have the general anisotropic case. With the help of the
effective frequency

Wy = (W, w,) v (9.11)
we may define the dimensionless frequencies
= 9% Wy =%
W, = o w, = o W3 T (9.12)
From these definitions, one has the property
W W05 = 1. (9.13)
The oscillator length
h
lo= 9.14
o= e (9.14)

characterizes an effective size of thetrap. Thislengthis
used for defining the dimensionless variables
r r r
X ==, X =, X3==
l I
instead of the dimensiona Cartesian vector r ={ry, ry,r}.
The dimensionless coupling parameter

gE4ne—lsN
lo

describesthe intensity of interactions between atomsin
coherent state. | ntroducing the dimensi onless nonlinear
Hamiltonian

(9.15)

(9.16)

~ - H(9)
H= hioo, (9.17)
and the coherent wave function
W(x) =1570(r), (9.18)
we have
3
1< 0 §°
EZ E}——X w; x%+g|lp| (9.19)
The eigenproblem (8.22) reduces to the form
HYa(x) = Epn(x), (9.20)
LASER PHYSICS Vol. 11 No.6 2001



BOSE-EINSTEIN CONDENSATION OF TRAPPED ATOMIC GASES

where the energy E, is measured in units of wy,. The
eigenfunction is assumed to satisfy the normalization

(W, W) = ﬁwn(x)fdx =1,

in which the integral is evaluated over the whole
domain of X = {Xy, X,, X3} .

9.4. Cylindrically Symmetric Trap

When the trapping potential (9.1) is cylindricaly
symmetric, so that the transverse radial frequencies are
equal,

(9.21)

and the axial-to-radial asymmetry is described by the
parameter

W, = W = W,

VEQ—)Z,

o (9.22)

then it is convenient to introduce the following nota-
tion. Theradial oscillator length

_ | h
= |
mOoor

serves to define the dimensionless cylindrical variables

(9.23)

2
Yooz= 2, (9.24)

Then one may define the dimensionless coherent wave
function

w(r, ¢,2) =17%0(r), (9.25)

depending on the cylindrical variables r 0 [0, o),
¢ O[O, 2m], z O (—o0, +0), and the Hamiltonian

7o, (9.26)
The atom—atom coupling parameter now is
g= 41'[%5N. 9.27)
The Hamiltonian (9.26) writes
H = —%V2+%(r2+vz2)+g|lp|2, (9.28)
where
2 2
v2- 0 0’ 1a+__a__+g__
ar’ TOr r%3¢® 97
In the eigenvalue problem
Hy, = Eu, (9.29)
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the energy E,, is measured in units of w, and the eigen-
function Y, = qJn(r d), 2) isnormalized by the condition

Irer’d¢I|L|Jn(r,¢
0 0 —o0

It isworth recalling here that the Hamiltonian (9.28) is
nonlinear and, thus, non-Hermitian. Thence, the set
{w,} of the coherent modes being the solutions of the
eigenproblem (9.29) does not necessarily form a com-
plete basis. And, in genera, the set {{,} is not
orthogonal. In particular, the eigenfunctions of non-
Hermitian linear operators can form complete bi-
orthonormal bases [314—-317]. The situation with non-
linear operators is more complicated: As there are no
general theorems, the completeness of the eigenfunc-
tion set is to be analyzed separately for each concrete
case. For some one-dimensional problemswith nonlin-
ear Schroédinger Hamiltonians the completeness of the
eigenfunction set has been proved [318, 319].

,2)|%dz = 1. (9.30)

9.5. Thomas—Fermi Ground Sate

In many cases, oneisinterested not in the whole set
of stationary states |, but solely in the ground state, Y,
corresponding to the minimal energy E,. There exists a
simple approximation that is very often used for
describing the ground state of trapped atoms. Thisisthe
Thomas—Fermi  approximation that is valid in the
asymptotic limit of strong coupling parameter g — oo.
Then one neglects the kinetic term as compared to the
potential term containing g, which reducesthe differen-
tial Schrédinger equation to an algebraic equation.

Thus, considering the general anisotropic case, one
neglects in the Hamiltonian (9.19) the kinetic differen-
tial operator

1¢ 2
.
2i:16xi

Then, Eg. (9.20) yields the wave function in the Tho-
mas—Fermi approximation

K=-

Pre(X) =—

Zw x%@[tc Zw x% (9.31)

where G)(-) is the unit-step function and
r2=2E. (9.32)

The energy E;r is defined from the normalization
(W+1e, Wrp) = 1. Unfortunately, there is a serious defect
in the wave function (9.31), since the average kinetic
energy

(Wrr, Kpe) = Z I[l"'qj::)((x)}dx

logarithmically diverges.
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In the cylindrically symmetric case, with the Hamil-
tonian (9.28), omitting the term —%VZ, we find the

wave function
2_2 12
r

2
vz
Wre(r, 2) = gcz—gg o(ri-r’=v’7), (9.33)
wherer isgiven by Eq. (9.32) and the energy E;- isto
be obtained from the normalization (9.30), which
yields

E. 15159\)3 - 0536689(gv)”°.  (9.34)
The average kinetic energy is again logarithmically
divergent.

The Thomas—Fermi approximation is often used
because of its simplicity. However, this approximation
has several deficiencies:

First of dl, asis evident from the form of the func-
tion Y+r containing a unit-step function, this approxi-
mation cannot correctly describe the edge of the atomic
cloud, since the Thomas—Fermi density |[* has a
sharp boundary at r., whilein reality the density isto be
smooth [320].

Second, this approximation is not self-consistent as
far asthe Thomas—Fermi energy E;¢ is defined from the

normalization ||Y|P = 1. But if one retains the kinetic
termin H then

(Wre, HWe) # Exg, (9.39)

not even approximately. And, moreover, the average

energy (U++, HW+¢) has no sense because of the diver-
gence of the average kinetic energy.

Third, this approximation is applicable for describ-
ing only the ground state but does not permit the con-
sideration of other coherent stationary states of the
eigenvalue problem.

Fourth, the approximation does not make a distinc-
tion between repulsive and attractive forces, that is,
between positive and negative coupling parameters g.
However, in the case of attractive interatomic forces,
there should exist a critical value g. < 0, such that for
g < g. the system becomes unstable [30, 31], which can
be manifested in the energy becoming negative or com-
plex.

Fifth, for the time-dependent equation (9.5), the
Thomas—Fermi approximation gives a solution that is
unstable with respect to small perturbations [321].

CHAPTER 10.
SPECTRUM OF COHERENT MODES

Coherent modes are defined by the eigenproblem
(8.22). For trapped atoms, the nonlinear Hamiltonian is
given by Eq. (9.4), with the trapping potential (9.1).

COURTEILLE et al.

This nonlinear eigenproblem cannot be solved exactly.
The standard perturbation theory starting with a har-
monic-oscillator approximation cannot be employed
since the coupling parameter (9.16), or (9.27), can be
very large because of large N > 1. The Thomas—Fermi
approximation, as discussed in Section 9.5, can give an
estimate only for the ground-state energy, with g —» co.
How would it be possible to find accurate approximate
expressions for the whole spectrum of coherent modes
and for arbitrary values of the coupling parameter? This
can be achieved by means of the self-similar approxi-
mation theory whose simplest variant, called optimized
perturbation theory, is outlined in the following section.

10.1. Optimized Perturbation Theory

Let us be interested in afunction E(g) of a coupling
parameter g. We keep in mind that E(g) = E(g, n) isan
energy level but, for brevity, the dependence on the set
of quantum numbers n is not written down explicitly.

If one invokes the standard perturbation theory,
valid for small coupling parameters, one gets a sequence
{p(Q)} of perturbative approximations p,(g), with k =
0,1, 2, ..., implying approximation orders, so that

E(9) = p(9) (g—0). (10.1)

However, the perturbative sequence {p(g)} is usualy
divergent for any finite value of g. Moreover, the cou-
pling parameter g is often not small, for which case the
perturbative sequence {p,(g)} cannot in principle pro-
vide reasonabl e approximations.

In order to make perturbation theory meaningful,
one has to change the theory so that the resulting per-
turbative sequence be convergent. This can be done by
introducing control functionsthat are so called because
of their role of controlling convergence. Then, instead
of adivergent sequence {p.(g)}, one would get a con-
vergent sequence {E (g, u)}, whose convergence is
governed by control functions u, = u(g). The idea of
introducing control functions for making a perturbative
sequence convergent was advanced first in [322]. The
introduction of control functions can be done in differ-
ent ways. A straightforward way isto start perturbation
theory with an initial approximation containing a set of
trial parameters u. The latter are then transformed into
functions u,(g) such that the sequence {g(g)} of the
terms

e(9) = E(9, u(9)) (10.2)

becomes convergent. Perturbation theory reorganized,
in this or that way, by introducing control functions
[322] has been successfully applied to a variety of
problems in quantum mechanics, statistical physics,
and field theory [322—342]. The so reorganized pertur-
bation theory is called by different authors differently,
for instance, as optimized perturbation theory, con-
trolled perturbation theory, modified perturbation the-
ory, renormalized perturbation theory, oscillator-repre-
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sentation method, delta expansion, and so on. The
method of potential envelopes [343-345] is also close
to this approach. More references can be found in
reviews [346-349].

Itisonly in afew simplest cases, such as zero- and
one-dimensional anharmonic oscillators [350-352],
when control functions can be chosen from the direct
observation of convergence. Contrary to this, the stan-
dard situation is when perturbative terms of arbitrarily
large orders are not available. Vice versa, for redistic
problems, one usually is able to find just a couple of
perturbative terms. Because of this, one usually defines
control functions by invoking some heuristic reasons.

The foundation for the choice of control functions
can be donein the frame of the self-similar approxima-
tion theory [353-362]. These functionsare to be chosen
so that they provide the optimal convergence, which
means that convergence is as fast as possible. Such an
optimal choice of control functions results in the opti-
mized perturbation theory. To derive the concrete equa-
tions defining control functions, it is necessary to con-
struct a dynamica system, called the approximation
cascade [358-362] whose trgjectory is bijective to the
approximation sequence { (g)}. The limit of the latter
isin one-to-one correspondence with an attractive point
of the approximation cascade. Approaching the fixed
point, the cascade velocity

Vi(9) = Ex.1(9: w) —E(9, uy)

9 (10.3)
+(Us1— uk)a_ukEk(ga Uy)
tends to zero. Hence, closer we are to the fixed point,
smaller isthe modulus of the cascade velocity (10.3). In
other words, to provide the fastest convergence, control
functions have to minimize the cascade vel ocity modu-
lus

IVi(9)| < |Ex+1(9, u) — Ew(9, uy)|

0 (10.4)
+|(Ugs1— Uk)a_ukEk(g, Ug)|-
From here, two variants of the fixed-point conditions
can bewritten down: either the minimal-difference con-
dition

Ev+1(9, u) —E(g u) =0 (10.5)
or the minimal-sensitivity condition
0
(uk+1_uk)EEk(g1 u) = 0. (10.6)
k

The latter, since in genera u,,, # U, reduces to the
variational condition

0 _

a_ukEk(g’ u) = 0.
Both conditions, (10.5) and (10.7), arewidely usedin var-
ious applications. When it happens that Eqgs. (10.5) or

(10.7)
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(20.7) have no solutions, these equations can be gener-
alized to the condition

min|Ey.. 1(g, u) — E(g, u)| (10.8)
or, respectively, to the condition
. |0
min (%Ek(g, u)‘. (10.9)

The accuracy of the optimized approximants (10.2), as
compared to the known value E(g), is characterized by
the percentage errors

e(9) —E(9)
|E(9)

Let us emphasize the difference between the opti-
mized perturbation theory and the variational proce-
dure based on the minimization of the internal-energy
functional: First, the latter has sense solely for the
ground state while the former is valid for the whole
spectrum of the eigenproblem. Second, the latter
implies the case of zero temperature, while the former
isindependent of temperature. Third, the minimization
of the internal energy yields an optimal value for the
energy itself, but the described method provides opti-
mal approximants for the spectrum.

x 100%. (10.10)

eq(9) =

10.2. Isotropic Ground Sate

In general, the eigenproblem (9.20) involves all
three space variables. The situation can be simplified
when the confining potential (9.1) is sphericaly sym-
metric, so that w, = w, = w,, and if we are interested
only in the ground state. In this case, the ground-state
wavefunction

Wo(X) = —=—x(r) (10.12)
4Tr

T

depends solely on r = [x|. Then the eigenproblem (9.20)
can be reduced to the effective equation

H.x = EX,
r= ZD 2 r |:| 2X ]
dr 41tr

containing only the radial variable r. The radial wave
function x(r), because of the relation (10.11), has to
satisfy the condition x(0) = 0.

The Rayleigh-Schrodinger perturbation theory can
be started with the harmonic Hamiltonian

(10.13)
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including a parameter u that will later generate control
functions u,(g). The ground-state eigenfunction of the
Hamiltonian (10.13) is

©) g o0l o
X (r) = ZD—TED rexpD—zur 0

The first-order approximation for the ground-state
energy writes

EY(g,u) = (x?, Ax).
It is convenient to introduce the notation

(10.14)

2
= (27@)1”' (10.15)

which characterizes an effective interaction strength.
Then, Eq. (10.14) yields

EV(g, u) = S+

Using the fixed-point condition

S u*?. (10.16)

0~ _
6uE (g,u) = 0,

we get the equation

(10.17)

su”+u’-1=0 (10.18)

defining the control function u = u(s). In general, the
control function Eq. (10.18) is to be solved numeri-
cally. But for weak and strong interaction strengths, we
may derive the following asymptotic expansions: for
the weak-coupling limit, s — 0O,
1., 393

u(s) = 155+ 35~ 235"+ TS’

and for the strong-coupling limit, s —» oo,
25 2 e5,1 o 12
u(s)=s - =S =S 1k

Substituting the control function u(s) into Eq. (10.16)
gives the first-order optimized approximant

E(s) = E1(9(s), u(s)).

Its behavior in the weak-coupling limit is

3 1 3 P+ 93 3 4
B(8)=5%55"16° "&1° ~256°

where s —» 0; and in the strong-coupling limit, we
have

105 s

-14/5

(10.19)

(10.20)

E(s) = s 54 352
(10.21)
35,12 9 s
20 20 500 '

as s — oo, Following the optimized perturbation the-
ory described in Section 10.1, one can obtain optimized
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approximants of arbitrary orders. However, we limit
ourselves here to the first-order approximants.

For atoms with negative scattering length, asin the
case of ‘Li or ®Rb, the coupling parameter (9.16) is
negative, hence the parameter (10.15) is negative, too.
If s< 0, the control function equation (10.18) has real
solutions only in theinterval s. < s< 0, where

S. = 4 —0.534992.

55/4

The ground-state energy (10.19) is real in the same
interval of s (s, 0) and becomes complex for s< s..
This corresponds to the interval g, < g < 0, with the
critical coupling parameter

_ (e2m**

gc = ~5—s; = —4.212960. (10.22)

The fact that there is a critical value for the coupling
parameter (9.16) can be reformulated as the existence

of acritical number of particles
_ loQc
© = Ima, (10.23)

that can form a coherent state. Thus, for the parameters
of the experiments [5, 110] with “Li, we get N, ~ 10°.

When the ground-state energy becomes complex,
this means that the system is unstable. The lifetime of
such a system can be estimated as

1

g Tme(g)] (1024)

1(g) =

where &(g) = E(5(g)). In the limit g — —o, we have
[139] the asymptotic expansions

Ree(g) ~ 0.169198¢g”° + 0.529102g *°
+1.443899g°° + 31.006277g 7,

Ime(g) = —0.520739g>°

+1.628409g%° + 1.049054g

Therefore, in thislimit the lifetime (10.24) can be esti-
mated as

—6/5

(10.25)

Note that if one defines the critical coupling g, not
from the direct solution of the eigenproblem (10.12)
but from the minimization of the internal-energy func-
tional [31], then the resulting critical coupling is about
twice as large as the value (10.22).

10.3. Anisotropic Excited States

When the confining potential is not isotropic or
when we are interested not solely in the ground state
LASER PHYSICS Vol. 11
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but also in the spectrum of excited coherent modes, we
have to deal with the eigenproblem (9.20). Then, for
devel oping optimized perturbation theory, we may start
with the Hamiltonian

(10.26)

_NIF

3
ZE)— o’ ux%

containing three trial parameters, u;, U, and us,
generating control functions. The Hamiltonian (10.26)
possesses the eigenvalues

EY = iui%i +1£:
i=1

with the eigenfunctions

(10.27)

P (x) = |‘|wn(x>,

(u/m™

oy

wheren={n; n,, ng};n=0,1,2, ...;and H, () isa

Hermite polynomial. Perturbation theory is accom-
plished [139] with respect to the perturbation

1]

o, (X) = —==H (ﬁx)expmzux@

3
BH=A-Fo = 35 (o -u)X +gluf. (10.28)

In the first order, one has

EP(g u) = EQ + (@, AHY,), (10.29)

whereu = {u,, U, Ug} . Introducing the effective interac-
tion strength

(10.30)

3
SEZgl_llni,
i=1

in which

I, = IH (e?d

| n(2 )4
where the property |H.(—X)| = |H,(X)| of the Hermite

polynomials is used, one obtains for the energy levels
(10.29)

En(g u)
(10.31)
Z U; E\ + 1DE1 + —D+ ;A/u1u2u3s.
i
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Control functions, playing the role of effective oscilla-
tion frequencies, are defined by the fixed-point condi-
tion

0

0 -
au E.’(g,u) = 0, (10.32)
which resultsin three equations
%l +ID 2 2y, U/
i i](ul —(L)i ) + E U1U2U3S - O (1033)

defining u; = ui(s), wherei = 1, 2, 3 and, for short, the
guantum multi-index n isdropped. Thefirst-order opti-
mized approximant is given by

E(s) =EP(g(9), u(s)),

where again, for brevity, the index n is omitted in the
|eft-hand side.

The control-function equations (10.33) yield

(10.34)

u.(s),vw__;
=M T o020 + 1)
3
" Z (2n;+ 1w, — (2 + 1w,
7| = 3 * ! 2 2 5
‘ 2[ (@0 +1) (2ni+ 1o
i
ji=1

in the weak-coupling limit s — 0, and
—2/5

(2n; + 1)(0

|‘| (2n;+1)"°
j=1

ui(s) = —

in the strong-coupling limit s — oo. For the energy
levels (10.34), we find

3 2
- h+0,s_ 1¢S5
E(s)__le,BH 3+ 5 1621 GriTo (10.35)
in the weak-coupling limit s — 0, and
3
5 15 _2/5
E(s) = le_l (2n;+1)™s (10.36)

j=1
in the strong-coupling limit s — oo,

For the ground state, when n, = 0, the coupling
strength (10.30) reduces to Eq. (10.15). Then for the
control functions, we have

3
s, @ 10 O 1|,
Oy wi—wil+—|s,
2 4[@;’ 0 wf}

ui(s) = w; -
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if s— 0, and

U(S) ZS 2/5,

when s — oo, In these two limits, the ground-state
energy is

Eo(S) = 5(0y + @y + )
siml,1,ang (10.37)
2 16l w, w@
fors— 0, and
Eq(S) = 55”5 = 0.547538g”° (10.38)
as s — . In the isotropic case, we return to

Egs. (10.20) and (10.21).

The arrangement of the energy levels in the weak-
coupling and strong-coupling limits is, in general, dif-
ferent. This can be illustrated by considering severa
first energy levelse(g) = E(s(g)). For exampl e

= + 0.063g e,00(9) = = + 0.048q,

€o00(9) =

eo(9) = 5 + 0.03649,

€00(9) = g +0.041q,
inthe weak-coupling limitg — 0O, and
0.547¢”°, ey 0(g) = 0.6089%,

e,0(0) = 0.632g%°,  e5(g) = 0.6759”°
for g — 0. Asis seen from here,

€110(9) <€(9) (g —0),

€o0(9) =

(10.39)
but

€110(9) > €x0(9) (g — ). (10.40)

Thiseffect is called level crossing [139].

In the case of negative scattering lengths, wheng <0,
the situation is analogous to that studied in Section 10.2.
For each given energy level, labelled by n, there exists
acritical value of the coupling parameter g = g, when
the corresponding energy becomes complex. Then the
lifetime of an energy level, with the complex energy
e,(g), can be estimated as

_ 1
(9= G imena)

The spatial shape of the cloud of trapped atoms is
characterized by the aspect ratio

1/2
R =[— i=1,02),
i 2 (i )

(10.41)

(10.42)
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in which X[} implies (@, X°,). For the function

) (x), this gives

_r(@n +Luzsy?
alerezim (1043)
In the weak-coupling limit,
(2n + Dws?
Ri= [(an + 1)coj
. L L . (10.44)
_ g
* Eﬂ ¥ [(Zni +1)ay (2ng+ 1)wj2(2n)3’%’

asg — 0, whilein the strong-coupling limit,

w
R=—

- (10.45)

(g — ).
This tells us that the shape of different coherent modes
essentially depends on the quantum numbers n;, if
g — 0, but for large coupling parameters, the shape of
different modes is practically the same, tending to that
of Eg. (10.45).

10.4. Cylindric Trapping Potential

For a cylindrically symmetric trap, it is convenient
to use the notations introduced in Section 9.4. Cylindri-
cal traps are often employed in experiments, therefore
we shall pay more attention to this case.

To solve the eigenproblem (9.29), we may again
invoke the optimized perturbation theory of Section 10.1,
starting with the initial Hamiltonian

Flo = —SV7 42U + v7) (10.46)

containing two control parameters, u and v. The eigen-
values of the operator (10.46) are

EQ = (2n+|m + 1)u+ H<+ v,  (10.47)
with the guantum numbers
n=012,...., m=0,1,%2,...; k=0,1,2,....
Therelated eigenfunctions are
on! u\m\ +1_12

WO, 6,2 = [
€™ (vim™

J2m [P

where L, (-) is a Laguerre polynomia and H,(") is a
Hermite polynomial.

plm Lur S M2
(n+|m|)!} expD ur Aka (ur)

expr- 2VZ2DHk('\/_Z)
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In the first order, we have
Evo(9, U, V) = (Wi AW

Towritedown thisintegral explicitly, it isconvenient to
use the notation

(10.48)

I nmk = $I|w$r)1k(r )|4dr ’

inwhichr ={r, ¢, z} isthe dimensionless space vari-
ablein cylindrical coordinates. Then we get

[

2 n! 2 2lm _—2x
| = —-[—————————} Mg
“ lin+ m) 2 |
0
x [LM(x)] 4de'e_2tsz<'(t)dt.
0

It is also convenient to introduce the notation

p=2n+|m+1, gq=2k+1. (10.49)

In this way, the energy levels (10.48) can be written as

EY(g,u,v)
_Pg,,. 0,90, . vD

where, for simplicity, the quantum indices n, m, and k
in the left-hand side are dropped.

The fixed-point conditions are

9 _ o 9o _
5gE (@ uv) =0, s=E7(g,u,v) = 0. (10.51)

These yield the control-function equations

10, s |v
= = = 0,
p%[ ut pvi g

(10.50)

, (10.52)
v s _
4F -7+ —= = 0,
%1 v pv M
in which the effective interaction strength
s=2p.J/gl VY (10.53)

isintroduced. Substituting the control functions u = u(s)
and v = v(9), defined by Egs. (10.52), into Eq. (10.50),
we obtain the optimized approximant

E(s) =E™(g(s), u(s), v(s)),
where g(s) is given by the relation (10.53).

Similarly to the previous sections, it isinstructive to
analyze the weak-coupling and strong-coupling limitsin

(10.54)
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detail. In the weak-coupling limit s — 0, Egs. (10.52)
givetheradia control function

1 p+3qv >
2 1/2 + 4 ZS
2p°(qv) 8p'(qv)
_ 3p°+16pgv + 20(qv)253
64p6(qv)7/2
and, respectively, the axia control function
- 3IZS+ V(F;-'- qV3)32
2p(qv) 4p*(qv)
7p° +20pqV + 12(qv)° 3
-V 5 912 S.
64p (qv)

In the strong-coupling limit s — oo, the radial control
functionis

u(s)=1-

(10.55)

v(s)=V-—
(10.56)

u(s) = u;s ° +u,s*°

-2 —14/5 -18/5 (10.57)
+ U3S + U4S + uss )
where
_ 5 _ 2 2
U =P pl = —-3p~+(qv)’,
5 _Sa4 2 2 4
ol = 3p —p(qv) —(qv),
125

s = —88p°+33p*(qv)” +4p°(qv)* +39(qv)°,

%E’uS = 561p° —238p°(qv)?
—21p*(qv)* +88p*(qv)° - 364(qv)".
And for the axial control function, we get

—2/5 —6/5
V(S)=V,S +V,S
(8)=vs ? (10.58)

-2 —14/5 —18/5
+VyS +V,S CHVS

wheres —» o and
2 5

2 2
v, = qV, —V, = -2(qv)°,
1= 2”2 p"—2(qv)

%vs = —p'—4p’(qv)’+6(qv)",
qv

125 |, = 11p° + 4p*(qu)* + 117p(qv)" - 138(qV)°,
2qv
2%?% = —119p® - 28p%(qv)?

+ 264 p"’(qv)4 —2912 pz(q\))6 + 2821(qv)8.
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The weak-coupling limit for the energy (10.54)
becomes

E(s)
ass—» 0, where

= ay+a;S+a,s +a,s, (10.59)

_ qv _ 1
- + A a - T
TP T

__p+2qv _ (p+2qv)?
16p*(qv)® 64p°(qv)™
And in the strong-coupling limit, we find

E(s) = b,s?® + b,s % + b,s°
(s)=bo t 2% (10.60)

+bys?+b,s ™ + bes™

ass —» oo, With

2

by = 7. 4by = 2p"+(qv)”,

-3p*+2p*(av)*-2(qv)*,
20b; = 2p° - p'(qv)*-2p*(qv)" + 2(qv)’,
500b, = —44p®+ 22p°(qv)®
+2p'(av)* + 78p*(qv)° - 69(qv)’,
12500b, = 1122p™ -595p°(qv) - 70p°(qv)’

+440p*(qv)° - 3640p°(qv)® + 2821(qv) ™.

The derived expressions (10.59) and (10.60) are valid
for any combination of quantum numbers.

20b,

10.5. Cloud Shape and Lifetime
The shape of an atomic cloud in a cylindrical trap
can be characterized by the mean-square radial and
axia lengths, respectively,
ro=(00m)"", 20=(Z0m)",  (10.61)

where [, is a quantum-mechanical average over the
wave function Y. Taking these averages with respect

to the function ljJnmk , We have

= [P = |4
/\/Il, ZO /\/;
In the weak-coupling limit s — O, the radial mean-
square deviation is
2p+
ro—@%L+ p 3qv &
4p’° (qV) -~ 32p*(qu)?

L 3p°+10pqv + 7(qv)’ oy
6 712 S O
128p°(qv)

(10.62)

(10.63)
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and the axial mean-sgquare length is

= & +;S
@% 4p(qv)**
__pt+4qv P+ 2p+3qv $0

32p°(qv)°  32p°(av)™ Y
In the strong-coupling limit s — o, for the radia and

(10.64)

axial averages (10.62) wefind

3p (QV)ZS—3/5

=+ =5
(10.65)
33p 2p(qv) —23(qv) S5
200
and, respectively,
2 2
Zozﬁ%ﬂs—ws_%
(10.66)
4|o +4p°(qv)*—9(qv)” <70
25 )
For the aspect ratio
R = EBZD‘”“D =l (10.67)
&lewmk ZO
we have
R = [2BV (10.68)
qu

This gives in the weak-coupling limit
R.(S) = -2-32(1 + 0,5+ 0,5+ 0,8 +a,s ), (10.69)

wheres — 0, and
4p*(qv)*a; = -p+qv,
32p'(av)’a, = 3p - 3(qv)”,
128p°(qv)*a; = —4p>-8p°qu + 5p(qv)” + 7(qv)’,
2048p°(qv)°a, = 15p° +112p°qu
+70p*(qv)” - 120p(qv)°® - 77(qv)*.
In the strong-coupling limit, the aspect ratio (10.68) is

R.(s) = ~2v(1+ s
(S) = J2v(1+B;s (10.70)
+BoS T BsS T+ B ),
wheres — o, and
_ 2 > 40, _
2B, =p"—(qv)", 9 =B, =-p" -2p*(qv)’+3(qv)",
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400B, = 77p° + 5p*(qv)? + 391 p*(qv)* — 473(qv)°,

16000
=13 Ps = —253p’—4p’(q)’

+266p*(qv)* = 2000p*(qv)°® + 2891(qv)°®.

These expansions confirm that the dependence of the
aspect ratio on quantum numbers diminishes in the
strong-coupling limit, so that

limR.(s) = ./2v,

in agreement with Eq. (10.45).

Considering the stationary properties of coherent
modes, we should not forget that in real traps atoms
cannot be confined infinitely long. This is because the
trapping of neutral atoms requires their specia spin
polarization which can be lost during atomic collisions
[363]. One usually considers binary and triple depolar-
izing collisions [364, 365]. The corresponding loss rate
of atoms in a coherent mode Y, can be written as

M= ANYome  T3= AN (10.72)

where A, is atwo-body dipolar loss rate coefficient, A5
isathree-body recombination loss rate coefficient, and

Yok = pwnmk(r)r‘dr, Sk = I|wnmk(r)|6dr. (10.72)

For akali atoms [364, 365], the two-body loss rate
coefficient isA, ~ 1071%-107'5 cmd/s and the three-body
oneisA; ~ 102-1028 cmf/s, the lifetime of atomsin a
trap is on the order of 1-100 s.

Theintegrals (10.72), with quﬁ,lk , take the form

Yomk = UV Inme  Oomk = UVIome  (10.73)
where |, isthe same integral asin Section 10.4 and

[

2 n! 3 3lm _-3x
J s—[—} Mg
" 2L (0 + ) 24K I

0
x [L™(x)] 6de’e‘3t2Hﬁ(t)dt.
0

In the weak-coupling limit, when s — 0, the quanti-
ties (10.73) are

ynmk(s) = '\/\_)Inmkf 6nmk(s) = V‘]nmk! (10'74)
and in the strong-coupling limit, we have
nmk(S) = ’\/_Vlnm 5_3/51
Ynmk(S) = P~/Q K (10.75)

2 2 —6/5
6nmk =pqv Jnmks )

ass — . Sinces~ N, the quantities (10.75) decrease
with increasing number of particles. However, the loss
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rates (10.71) increase with N according to the laws I, ~
N5 and I3 ~ N9,

To compare the loss rates of excited coherent modes
with those of the ground state, we may analyze the
reduced |oss rates

ynmk(s)
Yooo(S)
The latter possess the properties
Vnmk(o) = Vnmk(s) = Vnmk(oo)i
Snmk(o) < Snmk(s) < Snmk(oo)-

In order to get afeeling in what range the reduced loss
rates vary, we may consider several first states. For this
purpose, we need to calculate the corresponding inte-
gras | and J, For instance, for the ground state,
_ 1 _

IOOO - (2T)312 - 0063494,

- —1 _ - 0.006207.
(31)

And for several first excited states,
0.031747,
lo10 = 0.031747, 0.001379,

I = 0.047620, 0.003448.
Inthe case of n=k =0, but arbitrary m,
= (2m)!
(2m**(2"|m1)”
In thisway, we find

0.5<V;00(S) <1.18, 0.36 < d100(S) < 1.98,

6nmk(s)

dm(8) = 51

Vnmk(s) =

‘JOOO

0.002222,

I 100 J 100

J 010

‘]001

= @m)t
e E™m’

05<Voo(S) <1, 0.22< dow(s) < 0.88,

0.75< Vouu(S) 111 0.56 < Spo(S) < 1.22.

Thus, the loss rates of excited states are close to those
of the ground state.

CHAPTER 11.
WEAK-TO-STRONG COUPLING CROSSOVER

When considering the properties of trapped atoms at
arbitrary coupling parameters, one usualy needs to
invoke computer calculations. Analytical expressions
can be available only in the weak-coupling and strong-
coupling limits. Nevertheless, thereis amethod permit-
ting one to reconstruct an analytical formula, valid for
the whole region of coupling parameters, for afunction
whose asymptotic expansions in the weak-coupling
and strong-coupling limits are known. Here we briefly
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delineate this method and then apply it for describing
severa properties of trapped atoms.

11.1. Self-Smilar Crossover Approximants

Assume that we are interested in the behavior of a
function f(s) of the coupling parameter s. Let this func-
tion be defined by a complicated equation that can be
solved only numerically. But we can find the asymp-
totic expansion

f(s)=a,+as+a,s+... (s—0) (111

in the weak-coupling limit. And we can often analyti-
cally derive the asymptotic expansion

£(S) = by + b, + by + ... (s —> ) (11.2)

in the strong-coupling limit, where the powers [3; are
arranged in the decreasing order, 3; > 3, ;.

Introducing into series (11.1) control functions by
means of an algebraic transformation [366-368] and
using the self-similar approximation theory [353-362],
we abtain [369, 370] the self-similar root approximant

* _ n, 2. M2
fi(s) = a(...{[(1+Ass) +AsST] (113)

n. n,
+AS’} T+ L+ AS)

where K is the order of the approximation taken. The
coefficients Ay and powers n; are to be defined by consid-
ering the strong-coupling limit of the approximant (11.3)
and equating it to the strong-coupling expansion (11.2).
Thisway can be called the left-to-right crossover.

In general, it could be possible to go the opposite
way, from the right to the left. That is, we could con-
struct a nested-root approximant starting from the
strong-coupling asymptotic form (11.2) and then define
the corresponding coefficients and powers by equating
the approximant expansion in the weak-coupling limit
to the asymptotic expansion (11.1). However, theright-
to-left crossover results in approximants that usually
are less accurate than the | eft-to-right crossover formu-
las. Thisis connected to the fact that the weak-coupling
expansions have, asarule, zero radius of convergence,
while the strong-coupling ones have a finite radius of
convergence. The accuracy of the left-to-right cross-
over approximants is usually better than that of the
right-to-left ones because of the larger region of appli-
cability of the strong-coupling expansion (11.2) as
compared to theregion of validity of the weak-coupling
expansion (11.1). In fact, the latter can be valid for
s < 1, henceits region of validity isinside the interval
[0, 1). In contrast, the strong-coupling form, derived for
s> 1, hastheregion of applicability inside the interval
(1, ). Therefore the self-similar crossover approxi-
mant has to be fitted to the asymptotic expansion that
possesses the larger region of validity.

When considering the strong-coupling limit s —» oo
for the approximant (11.3), we need to know the rela

COURTEILLE et al.

tion between the powers n and thenumbersj =1, 2, ...
Among all possible relations, we have to choose that
one which isthe most general, imposing no restrictions
on the powers f3;. It is possible to show that the condi-
tion

jin<j+1 (j=12,...,k=-1) (11.9)
provides a genera way of expanding the form (11.3),
vaidforany k=1, 2, ... and arbitrary [3,.

Under the criterion (11.4), and rewriting the approx-
imant (11.3) in the form

D Ank—l e
fX(s) = aO(AkSk)nk[IL+L1Xk k-1)n,_,
O

A
Ng-2 (ke 0O Ny on
XEL].+AK_2XK 1-(k-2) k_ZEﬂ.+...+A—2X3 2n,
0 A1 O 3
An1 n2|:|"'3 an—Ian
Ny
x| 1+ 2Ly M ¢ X0 O..g a,
{ A, %l All:J O O O

wherex = s, it iseasy to expand the latter in powers of
x. Comparing the resulting expansion with the strong-
coupling limit (11.2), we obtain

kn, = Bo,
(kK=]ne_j = Bj=Bj_1+k—j+1,

with 1 < j < k — 1. The vaues of n;, defined by
Egs. (11.5), are in compliance with the criterion (11.4)
because of the inequality 3, —[3;_; <O.

The first-order self-similar approximant (11.3) is

(11.5)

f5(s) = ap(1+As)",

where
-]
dg

The second-order approximant (11.3) takes the form

Ny = Bo.

£5(s) = al(1+A9)™ + As] ",
in which

Anlnz = _b_o[l_Pl_[lnz M2 = ?_0
Yo athbfd T TP Ay

N =Bi—Bo+2, 2n, = PBy.
In the third order, we find

£5(5) = ao{[(1+B,8)" + B, "+ Bas}

LASER PHYSICS Vol.11 No.6 2001
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where
Bnlnzn3 E)QD b, Dn3|] b, n;-1 9_@”2”3
! B agthsbdd Chyb,  2nyngbdd
g _ Doy by [ n, _ by
T amel B Ty
N =B,—-B1+2, 2n, = B;—PBo+3, 3n; = By.

The method of constructing self-similar crossover
formulas is aso applicable to asymptotic expansions
more general than Eq. (11.1), for instance, to series

f(s) = ap+as +a,8 +... (s—=0), (116)

inwhich a; arearbitrary positive powers arranged in the

increasing order as
O<a;<dj,; (11.7)

Then, instead of Eq. (11.3), we obtain the self-similar
approximant

F5(8) = ag( {[(1+AS™) "+ AT

+ Aksuk)nk.

(11.8)
+AS Y

The criterion (11.4) transforms to the inequality

an; <o,;. (11.9)
And, in the place of Egs. (11.5), wefind
o N = Bo,
M = Po (11.10)
a;n; = C(j+l+l3k—j_l3k—j—1!
withj=1,2,...,k—-1.

The described method makesit possible to construct
analytical interpolative formulas for the whole range of
the coupling parameter. The method can also be used
for interpolating any functions of other variables, pro-
vided the corresponding asymptotic expansions are
available.

11.2. One-Dimensional Confined System

To illustrate the method presented in the previous
section, let us consider a model case of a one-dimen-
sional system of trapped atoms [369]. This means that

in the eigenproblem H y = Ey, we consider the nonlin-
ear Hamiltonian

3 = _%d_ + 23X+ glul, (11.11)

inwhich x O (—oo, +00).
In order to derive the weak-coupling and strong-
coupling asymptotic expansions, we may resort to the
LASER PHYSICS Vol. 11
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optimized perturbation theory of Section 10.1. To this
end, we start with the trial Hamiltonian

Hoz_ld_ _Xl

v (11.12)

containing a control parameter u, possessing the eigen-
value

EQ = %H%u,

and having the eigenfunction

PO(x) = (um™ Hn(ﬁjx)expm—éuxﬁ,
J2"n!
wheren=0,1, 2, ...

The first-order approximation gives
€ _ug L 1o 10
EP(g u) = 2%1 + 53%1 ot Jul,g,  (11.13)

with the notation

J’Hn(x)e 2 gy

=}

1'[(2n nt)’

The variational condition for Eqg. (11.13) yields the
equation

w+au’-1=0 (11.14)
for the control function u = u(a), where
2l 2.9
=51 (11.15)
For the optimized approximant
E(a) = E;(g(a), u(a)), (11.16)
we have
_1g 108
E(a) = QE‘ +30- (11.17)

Expression (11.17), together with the control-function
equation (11.14), results in the weak-coupling expan-
sion

am:%+%

(11.18)

1 3 q]
%“O" o O"128"‘ " 20480 O
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E(g)

Fig. 26. The ground-state energy for the one-dimensional
nonlinear Schrédinger equation. The self-similar approxi-
mant E{g) (solidline) isgiven by Eq. (11.25), the crossover
approximant E; (g) (dashed line) is defined in Eq. (11.21),

and the Thomas—Fermi approximant E1g(g) (dashed line
with diamonds) is the energy (11.28).

for a — 0, and in the strong-coupling expansion

_G+ o
E(a) = gh+ 37
(11.19)
B 23,1 23 1 2> 7 _107]
% "% 7Y T D
asd —s 0o,

Following Section 11.1, we find the self-similar
crossover approximants. In thefirst order, this gives

Ef(a) = fh+ 12%(1 + A%, (11.20)

with A = %/é . In the second order, we find

Ef(a) = th+ 128[(1 A+ A", (11.21)

where

_ 8l _ 2

A= 32£’ Ao =g

Formulas (11.20) and (11.21) interpolate between the

weak-coupling expansion (11.18) and the strong-cou-
pling limit (11.19).

A similar interpolation procedure can be applied for
constructing an analytical expression for the ground-
state wave function [369]. The latter, at small space
variable, has an expansion

qJ(X) = CO + C2X2 + C4X4

(x —0),  (11.22)

COURTEILLE et al.

and in the opposite limit

1

CexpD——xZD (X — ).

P(x) = (11.23)

The interpolating formula, sewing the limits (11.22)
and (11.23), can be constructed invoking the self-simi-
lar exponentia approximants [371], which resultsin

Wi (X) = Cexp%—%x2+ax2exp(—bx2)%. (11.24)
0 0

Here, the coefficients a and b are to be defined by
expanding the function (11.24) in powers of X — 0
and substituting this expansion into the eigenproblem

Hy, = Eyq whichyields
2E—-4aE-1
12a '
The normalization constant C and energy E are defined
by the equations
(lp*l qJ*) = 1!
where E=E[j

The self-similar approximant (11.24) for the wave
function is different from the ground-state wave func-
tion

_LligCE b=
a—2+gC E, b

E, = (W, HYL), (11.25)

(0)(X) _ _ g u 4

exp D_éx 0 (11.26)

with the control function u(a) defined by the varia-

tional equation (11.14), with a = J/(2/1) g. And in the
Thomas—Fermi approximation, we have the wave func-
tion

2 2 12
(9 = 2 o0e-X),  (@127)
with the energy
2 23
Ere(0) = % = 3o (11.29

To compare these different approximations, we con-
sider the properties of the ground-state energy E(g), as
afunction of the coupling parameter g, presented by the
optimized approximant E,,(g) = E(a(g)) given by
Eq. (11.17), by the crossover approximant E3 (g) from
Eq. (11.21), by the energy E[{g) defined in Eq. (11.25),
and by the Thomas—Fermi energy Eq+(g) in Eq. (11.28).
We also compare the shape of the density

n(x) = [P(x)%, (11.29)

defined for the corresponding functions (11.24),
(11.26), and (11.27). The accuracy of the approxima-
tions can be characterized by substituting the wave

LASER PHYSICS Vol. 11
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Fig. 27. The density (11.29) for the corresponding wave functions in the self-similar approximation (11.24) (solid line), Gaussian
approximation (11.26) (dashed line), and Thomas—Fermi approximation (11.27) (dashed line with diamonds) for different coupling
parameters: (8) g=0.2; (b) g=1; (c) g=5; (d) g = 20; (€) g = 50; (f) g = 100.

functionsinto the Schrddinger equation and calculating
the residual R(x) and dispersion a2, given by the equa-
tions

+o00

R(x) = (H -E)y(x), OZEIIR(X)Izdx. (11.30)

Figure 26 shows the energies E{g), E3 (g), and

E;r(9). The first two energies are almost indistinguish-
able from each other. The optimized approximant
Eqpt(9) is not shown since it practically coincides with

LASER PHYSICS  Vol. 11
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Er{(9). The Thomas-Fermi energy E=(g) has an incor-

rect weak-coupling limit and becomes a reasonable
approximation for g = 7.

The density (11.29) for the self-similar wave func-
tion (11.24), Gaussian function (11.26) and Thomas-
Fermi wave function (11.27) is presented in Fig. 27 for
different coupling parameters. Asis seen, the self-sim-
ilar function (11.24) has the correct behavior in both
weak-coupling as well as strong-coupling limits, while
the Gaussian function (11.26) does not present a good
approximation in the strong-coupling limit and the
Thomas—Fermi function (11.27) is not correct in the
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R(x)
18+ (b)

16 <
14+ I
o "
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R(x)
201

154

-1 ] | | | | | | | M |
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Fig. 28. Theresidua R(x) defined in Eq. (11.30) for the self-similar solution (11.24) (solid line), Gaussian solution (11.26) (dashed
ling), and Thomas—Fermi solution (11.27) (dashed line with diamonds) for several coupling parameters. (a) g = 5; (b) g = 50;

(c) g = 100.

weak-coupling limit. In addition, the latter function is
always incorrect at the boundary of an atomic cloud.

The accuracy of the corresponding approximate
solutions to the nonlinear Schrédinger equation is well
illustrated by the residua R(x), which is shown in
Fig. 28. We also calculated the dispersion o2 for differ-
ent coupling parameters within the region 0 < g < 100.
The maximal, with respect to g, dispersion for the self-
similar function (11.24) is of order one, for the Gauss-
ian function (11.26) it is about 400, and for the Tho-
mas—-Fermi function (11.27) itisdivergent. Thisclearly
proves that the self-similar function (11.24) is the most
accurate solution to the nonlinear Schrodinger equation
for small aswell asfor large coupling parameters.

11.3. Spherically Symmetric Trap

Similarly to the model one-dimensional case con-
sidered above, we can construct self-similar crossover
approximants for the realistic three-dimensiona situa-
tion. We shall illustrate thisfor a spherically symmetric
trap. To this end, let us consider the isotropic ground
state studied in Section 10.2.

Using the weak-coupling and strong-coupling
expansions, (10.20) and respectively (10.21), for the
ground-state energy (10.19), we construct the crossover
formulas of first order,

EX(s) = g(l + As)”®, (11.31)
where A = 0.633938; of second order,
E5(9) = SIA+A9T AT, (1132)

with A; = 1.168636 and A, = 0.401878; of third order,

E3(s)
(11.33)

= 2{[(1+B,9*+B,s1" + BsT ™",

where B, = 1.633061, B, = 1.132289, and B; =
0.254766; of fourth order,

11/10

Ex(s) = ({[(1+C;9)*° + C,87

/ 3 (11.34)
16/15 10

+CyS° ) +C,sh)
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with C; = 2.066398, C, = 2.111737, C; = 0.970940,
C, = 0.161506; and of fifth order,

11/10

E5() = S[({[(1+D;9)* + DS
(11.35)

4.21/20

16/15 2/25
+D,S° )+ D,sh)

+Dss’]

where the coefficients are D; =2.479006, D, =
3.311734, D; = 2.278301, D, = 0.777603, and D; =
0.102385. Thevariable sisdefined in EqQ. (10.15). Note
that A> A, > B3> C, > D5, which suggeststhat the accu-

racy of E; (s) should increase with increasing k. The

accuracy of the crossover approximants E; (s) can be
characterized by the percentage errors

k(s)—E(s)
[E(s)l

calculated with respect to the optimized approximant
(10.19). Even more instructive are the maximal errors

gr(s) = x 100%,

€ =maxey (s) (0<s<w).
S
For the latter, we find

€ = 37%, & = 14%, &5 = 0.8%,
g; = 0.6%, & = 0.4%,
which demonstrates good numerical convergence of
the crossover approximantsfor the ground-state energy.

A crossover approximant for the radial wave func-
tion satisfying Eq. (11.12) can also be constructed by
sewing the small-radius limit

X(r) =cir+cgr’+cgr® (r—0)  (11.36)
and the large-distance asymptotic form
1
X(r) = CrepE-3r (1 —w).  (1137)
The self-similar crossover formulais
X« (r) = CrexpEi—%r2+ar2exp(—br2)E. (11.38)
O O

Here the coefficientsa and b are to be found by expand-
ing Eqg. (11.38) in powers of r and substituting this
expansion into Eq. (10.12). Equating the coefficients at
the like powers of r, we get

b= 2(1-2a)E—2(1-2a)° -1
12n 20a '
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Fig. 29. The ground-state energy of atoms confined in a
spherically symmetric trap: The self-similar approximant
(11.39) (solid line); second-order crossover approximant
(11.32) (dashed line); and the Thomas—Fermi energy (9.34)
(short-dashed line).
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Fig. 30. Percentage errors of the first crossover approxi-
mantsfor the ground-state energy of aspherical trap: EI (9
(solidline); E; (s) (dashedline); Eg (s) (short-dashed line).
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Fig. 31. Percentage errors of the higher crossover approxi-
mantsfor the ground-state energy of aspherical trap: E; (9
(solidline); E§ (s) (dashedline); EZ (s) (short-dashed line);
Ex (9) (dotted line).
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The normalization coefficient C and energy E are
defined by the equations

[ 00

E, = '!’x*(r)er(r)dr, _!'x*(r)dr =1, (11.39)

where E[j= E.

Inthisway, we obtain several representationsfor the
ground-state energy: The self-similar approximant E;

givenin Eq. (11.39), the crossover approximants E; in
Egs. (11.31) to (11.35), the optimized approximant E(s)
defined by Eqg. (10.19), and the Thomas—Fermi approx-
imation Er from Eq. (9.34), withv = 1. Similarly to the
previous section, we may analyze the behavior of these
approximations as functions of the coupling parameter
0. The analysis shows that the self-similar approximant
E{9), defined in Eq. (11.39), givesthe best approxima-
tion, valid for the whole range of the parameter g [
[0, ), correctly interpolating the weak-coupling
expansion and the Thomas—Fermi limit. The latter
gives a good approximation only for g > 300, essen-
tially deviating from the weak-coupling form, asis seen

in Fig. 29. The percentage errors € () of different

crossover approximants Ej (s) are presentedin Figs. 30
and 31. The maximal error occurs around g ~ 1.
The spatial density
2
n(ry = X0

2
r

(11.40)

is expressed through the corresponding radial function,
for which one can take either the self-similar form xr)
in Eq. (11.38), or the Gaussian approximation XO(r)
from Section 10, or the Thomas—Fermi wave function

Xre(r) = 1 /%’Tui—rz)e(ri—r%, 2 = 2Eq,

The accuracy of the considered approximate solutions
can again be characterized by the residua

R(r) = (A —E)x(r)
and the dispersion

2 2
o” = [|IR(r)|dr.
|

The analysis hereis similar to the previous section, and
again the self-similar form (11.38) turns out to be the
best approximation, valid for al coupling parameters.
Thus, the residual as well as the dispersion diverge for
the Thomas—Fermi approximation at any g. The accu-
racy of the Gaussian variational approximation is good

COURTEILLE et al.

for small g but decreases with increasing g. For
instance, the dispersion 62 for the Gaussian approxima-
tion monotonically riseswith g, being e.q., at g = 2513,
equal to 13.2. At the same time, the dispersion for the
self-similar approximant (11.38) reaches the maximum
of 02 = 4.1 at g = 2411 and then again diminishes to
o2=11atg=2513.

11.4. Traps of Cylindrical Shape

Self-similar crossover approximants can also be
constructed for cylindrical traps, using the expansions
of Section 10.4. Recall that these expansions, being
donein terms of the variable

S=2pJ/alymvg  (p=2n+[m+1, g=2k+1),

are valid for arbitrary excited coherent modes labelled
by the quantum numbers n, m, and k.

Being based on the weak-coupling, (10.59), and
strong-coupling, (10.60), expansions for the energy
levels, and employing the technique of Section 11.1, we

obtain the crossover approximants E; (s). Thus, in the

first order, we have
EX(s) = an(1+ As)”®, (11.41)

where

_ qv _ 1.746928
aO - p+ —2-1 A - aglz .

The second order yields
EX(s) = aol(1+ A" + AS] "™,
with the same a, and with

_ 2.533913
A= 25/6

(11.42)

506 3.051758
[2p"+(qv)]™, A, = ===

In the third order, we get

B () (11.43)

2/15

+ 8353} ,

11/10

= ap{ [(1+ B;5)*° + B,s]
where
_ 1.405455
a""[2p"+ (qv)’]
x[8p* + 12p*(qv)® + (qv)1>",

B. = 6.619620
, = Sieth
ags/n

5/66

2. 1011

[2p”+ (qv)]

_ 5.331202
- 15/2

ag

Bs
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Fig. 32. Percentage errors of EI (solidline), E; (dashed line) and E§ (short-dashed line) asfunctions of the coupling g for several

energy levelsand trap shapes: (a) v = 0.1, n=m=k =0 (ground-state); (b) v =0.1, n=k=0, m= 1 (vortex state); (c)v=0.1,n=3,
m=2,k=1;(d)v=100,n=m=k=0; () v=100,n=k=0,m=2.

Similarly, we find Ej (s) and E3 (s), athough we do first excited states. For example, for the ground state,
not write them down explicitly. withn=m=k=0, andforv =1, wefind

— 0 * = 0 * = Y
To check the accuracy of the crossover approxi- €1 = 3.7%, & = 14%, & = 08%,

mants E} (s), we caculate the percentage errors € (9) € = 0.6%, 5 = 04%,

; * ; - ; which demonstrates good convergence. In the case of a
comparing Ej (s) with the optimized approximant (10.54). cigar-shepe trap, with v = 0.1, we obkain

We have calculated the maximal errors €f = max.£y (S
K <&k (9 €¥ = 8%, €% = 35%, & = 2%,

for the anisotropy parameter v, defined in Eq. (9.22), in
the range 0.1 < v < 100 for the ground state and for ten ez = 12%, &5 = 0.8%.

LASER PHYSICS Vol.11 No.6 2001
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Fig. 33. The ground-state energy of atoms confined in a
cylindrical trap with v = 10: The optimized approximant
(10.54) (solid line) and the Thomas—Fermi energy (9.34)
(dashed line).

For a disk-shape trap, with v = 10, we have

€7 =125%, €5 =3%, €3 =28%, ¢;=-1.8%.

The same good convergence occurs for excited states
with different quantum numbers and for various
anisotropy parameters. The standard situation is such

that € = 4-12%, €5 = 2-5%, and aready the third-
order approximant has €% ~ 1%.

Toillustratein more detail the accuracy of the cross-
over approximants E; as functions of the coupling
parameter g, we show in Fig. 32 the percentage errors
of Ef, E5, and E} for severa levels and different

anisotropy parameters. The errors are calculated with
respect to the optimized approximant (10.54) whose
ground-state behavior is presented in Fig. 33, wherethe
Thomas—Fermi energy is also given for comparison.

In the same way, we may construct the crossover
approximants for the aspect ratio (10.68), being based
on the asymptotic expansions (10.69) and (10.70).
Here, it is more convenient to deal with the quantity

RS _

J2v

for which Egs. (10.69) and (10.70) transform to the
expansions

R(s) = DD/q%—IE+ A/qEV(O(13+ 0,8+ ...)

in the weak-coupling limit s — 0, and to

Ri(s) = 1, (11.44)

R(S) = Bis ™+ Bs ™+ ..

COURTEILLE et al.

in the strong-coupling limit s — . Constructing the

salf-similar approximant R (S), we then return to the
aspect ratio

Rf(s) = #/2v[1+ R ()]

We have compared the accuracy of the crossover
approximants, corresponding to Eq. (11.45), with the
value (10.68) for the anisotropy parameter v in the
range O < v < 100, and for the first ten energy levels.
The results are similar to those obtained for the energy
levels themselves.

(11.45)

11.5. Strong-Coupling and Thermodynamic Limits

The atom—atom coupling (9.27) is proportional to
the number of atoms N, which suggests that the strong-
coupling limit g — oo hasto be related to the thermo-
dynamic limit N — oo. The averages of observable

quantities A should behave in the thermodynamic limit

S0 that
lD&E'@o.
N

Let us check this property for the coherent averages of
the Hamiltonian (8.13). For the latter, the coherent
average (8.54) coincideswith the pure coherent average
(8.31), that iswith (8.38). For the normalization (8.51),
we have

lim (11.46)

HLL, = AN+ Sav) (11.47)

where n implies the whole set of quantum numbers n,
m, and k; the mean single-particle energy is

Sh EJ’HJ: (r)[— %Vz + %(r2 + szz)}wn(r)dr , (11.48)

with dimensionlessr measured in units of |, defined in
Eq. (9.23); and y,, being the same as v, in Eq. (10.72).
From the eigenproblem (9.29) it follows that

E.= (W, HY,) = S+ 0y,

Hence, the average energy (11.47) of a coherent state
can aso be presented in two other forms as

THL, = 3H0N(E,+S),

. (11.49)
|:Hm\ln = hwrNaEn - zgyr%

Note that one should not confuse here H, which is the
system Hamiltonian (8.13), with H, which is the
Schrédinger Hamiltonian (9.28).

Consider the strong-coupling limit g —» o for the
coherent average energy (11.47) or (11.49). According
LASER PHYSICS Vol. 11
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to the notation (10.53), this corresponds to s — .
Then, Egs. (10.60) and (10.75) yield

5 o5

En(9) = 357 Vol = 55 (s —=0).

Inthislimit, the coherent single-particle energy (11.48)
is

3 o5

Si(8) = Ex(8)=gYn =75 (11.50)
Therefore,
[HO, = A, NS™ (5 — ). (11.51)

From the definition of the coupling (9.27), we have

g-= 4HPN, 85—@—5.
& Mo

And the relation (10.53) between g and s gives

(11.52)

1/2
s=c2P0 N ¢ =(8n/glv)?.

5o (11.53)

Then, the average energy (11.51) becomes

6/5
HO,, ~ C A2 NS,

o (11.54)

Notethat in the strong-coupling limit, when s —» o,
the average kinetic energy

1
Kn = B.'Jn, —EVZQJ,%

becomes negligible as compared to the average poten-
tial energy and the mean interaction energy. To show
this, we may write the mean single-particle energy
(11.48) as

S = Kn+§r0+§v Z.

From the asymptotic expansions (10.65) for r, and
(10.66) for z,, we have

1 1 3
§r§+ évzzg = ZS% (s — ).

Hence the average kinetic energy
K, = Sh—gs%—» 0 (s— )

tendsto zero according to the limit (11.50).

If we consider the thermodynamic limit, keeping the
frequency w, fixed, then

—I%EHD\,nDNZ/S—»oo (N — o).
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Fig. 34. The vortex energies as functions of vg: the basic-
vortex energy Qgq;q (solid line) and the energy Qqyq of the
vortex with the winding number m = 2 (dashed line).

Then the property (11.46) is not valid for the Hamilto-
nian H, which implies that such a system is thermody-
namically unstable. The N”5-law of divergence of the
average energy (11.54) is the same as that found [372]
for the ground-state energy of bosons interacting
through Coulomb forces.

Another possibility could beto resort to the thermo-
dynamic limit as defined in Eq. (7.35), when |, ~ N¥3
and &, ~ N23, Then

1

N
which means that the average energy becomes negligi-
ble.

Finally, we may ask the question, how we should
change the frequency «, in order to satisfy the condi-
tion of thermodynamic stability (11.46) so that the
average energy (11.54) would give afinite value,

[(HOy,, ON?°— 0 (N —» ),

%EHENH—» const (N— 0)?

The latter is satisfied for w, ~ N3 and, respectively,
[, ~ NY8, This suggests the definition of the thermody-
namic limit as

N —» oo, Nw' —» const.

w, —= 0, (11.55)

It isinteresting that the same definition of the thermo-
dynamic limit follows from a quite different condition
[31] requiring the finiteness of the Bose-condensation
temperature for an ideal gas.

CHAPTER 12.
VORTICES IN TRAPPED CONDENSATES

Vortex states in trapped atomic clouds have been
considered theoretically by several authors [151, 154,
320, 365, 373-375]. Vortex production appearsto be a
common consequence of mechanically disturbing a
condensate. A variety of methods have been suggested
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by which vortices could be formed. A straightforward
way would be by rotating the trap. However, since such
arotation is difficult to realize, other techniques have
been proposed: population transfer viaa Raman transi-
tion into an angular momentum state [162, 376]; cre-
ation of circulating states in traps with a multiply con-
nected geometry, such as atoroidal trap or a magnetic
trap pinched by a blue-detuned laser [377]; stirring the
condensate by means of laser beams [378, 379]. The
possibility of creating different topological modes,
including the vortex ones, by imposing resonance fields
has been advanced first in [139] and studied later in
[380]. Recently, vortices were created in a two-compo-
nent condensate [9] by combining a microwave fidd
inducing i nterconversion between the two components at
alaser beam rotating with aresonant frequency [142].

12.1. Vortex Transition Frequencies

To transfer a coherent cloud of atoms from the
ground state with the energy per particle Eqy to another
coherent state having the energy E, .. One needs to
pump into the system the energy per particle

Qumk = (12.1)

To estimate the difference (12.1), we may use the opti-
mized approximants of Section 10. These show that for
the strong coupling g > 1 two principally different sit-
uations can occur. Since the energy of a coherent state,
labelled by the indices n, m, and k, grows with g as
E.m ~ 9%°, the difference (12.1) aso growsin the same
way, Q. ~ g%°, except for the case with the selection
rule

Enmk - EOOO-

¥ 2k+1@2n+[m+ Dl = 1, (122

when the difference (12.1) diminishes with g. The
selection rule (12.2) is satisfied for the sole state with
n=0, m=1, and k = 0, which correspondsto the vortex
state with the winding number m = 1. Vortices with
higher winding numbers have essentially higher ener-
gies that increase with g. The behavior of the vortex
energies Q.. where m# 0, as functions of vg, is pic-
tured in Fig. 34. Asis seen, the energy Qo of the basic
vortex state with the minima winding number m = 1
decreases with vg while the energy Qg,, Of the vortex
state with the winding number m = 2 first decreases
with vg and then increases. The qualitatively different
behavior of the energy Qg of the basic vortex as com-
pared to the energies of other vortex states suggests the
following criterion of Energetic Stability: For a given
orbital momentum #%|m|, at large vg, the creation of m
basic vortices is energetically more profitable than the
formation of one or severa vortices with higher wind-
ing numbers giving in total the same orbital momen-
tum. Thisisin agreement with the thermodynamic sta-
bility of vortices studied in [375].

To form avortex in arotating trap, one has to reach
the critical rotation frequency that in dimensionless

COURTEILLE et al.

units reads AQ,/|L,|, where L, = Amis an eigenvalue

of the orbital momentum operator L, = —i%d/d$. For
the basic vortex with the winding number m = 1, the
critical frequency is

Q. =Qp10 = Epio — Egoo- (12.3)

To consider the dependence of this frequency on the
coupling g it is convenient to employ the notation

2vg
(2_'_[)3/2
and to use the results of Section 10. Then, in the weak-
coupling limit, we have

1 3+7v, 7+30v+31vis
Q. =1- s+ s — s’ (12.4)
¢ avY? Bav? 512y 52

ass —» 0, and in the strong coupling limit, we get

S=

0, =357~ 2(15-20%)s*
(12.5)

3 2 4y -2
+20(42—5v —2V)s

as s — oo. Invoking the expansion (10.65) for the
mean-square radius, according to which ry = sY® as
S —» o0, We may write

3

Q.=— (ry— ). 12.6
=50 (ro ) (12.6)
Asafunction of g, this reducesto
32)” _ 3.424
Q- 32m) _ _ 3424 (12.7)
2(vg) (va)
forvg — oo,

Invoking for the critical rotation frequency the Tho-
mas—Fermi approximation, combined with a hydrody-
namic approximation, one finds [320, 365, 375, 381]

the value
5 I
Q.= —In-0.7—=, 12.8
© oor? ? & (128)

where
5 2/5
r? = 2B, = a%ﬁvg%

is the Thomas—Fermi radius and &, = Ur, is the coher-
ence length. From here

0.932
Q.= =222 |n(0.8vg).
Vo)™ (0.8vg)

(12.9)

(12.10)

The expressions (12.7) and (12.10) are close to each

other in the region 1 < vg < 103. For instance, when

vg = 100, their difference is about 10%.
LASER PHYSICS  Vol. 11
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12.2. Effective Radial Equation

To analyze the radia cross section of avortex, itis
convenient to derive an effective radial equation not
containing the axial variable z. To this end, let us sub-
stitute the function

eimzi)
w(r,6,2) = x(r,2)——=, (12.11)
J2n
wherem =0, £1, +2, ... and X isredl, into the eigen-

problem (9.29) with the Hamiltonian (9.28). Then we
have

156 6 6 DX
T2l rar o (12.12)
+ = % +v2Z2+ M X+2T[X
Let us present x as a product
x(r,z) = F(r,2)h(2), (12.13)

in which F(r, 2) isaslow function of z, such that

‘th‘ ‘Fdh‘ (12.14)

and where h is normalized according to the condition

J’hz(z)dz = 1.
Definetheradial, E,, and axia, E,, energies by therela-
tion
E=E +E,

1 (12.15)

E,= é-rh(z) 12 +v *Zh(z)dz.

Then from Egs. (12.12) and (12.13), taking account of
theinequality (12.14), we find

lga

“ 20,2 tro
(12.16)
mD 3 _
2% 0 Fh+ F°h’ = E,Fh
Introduce the function
f(r)= IF(r,z)hz(z)dz. (12.17)
LASER PHYSICS Vol.11 No.6 2001
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Keeping in mind that F(r, ) isasow function of z, we
may use the approximation

+o0o +o0

I F(r, 2h*(2)dz O f3(r) f h*(z)dz.

Multiplying Eq. (12.16) by h, integrating over z, and
defining the radial coupling

+00

a= %{ [ h*(2)dz (12.18)

and the nonlinear radial Hamiltonian

" =_1Dd ldpg, 1 mg
A(f) = 502" rart 2% + e+ af?, (1219)
we come to the effective radial equati on

H.(f)f = Ef. (12.20)

As an example of the function h, let us take the har-
monic-oscillator wave function

v4
O exp Ly 70H,(02).
2°k!
Then the axial energy is

©) — 'y
E,’ = E("‘ i:'V
and the radial coupling (12.18) becomes
Jv

a= ﬁlkg,

h(2) =

where

00

2 ;[e e Hi(2)dz.

2y
The latter integral decreaseswith k, e.g.,
1

lp = — = 0.398942,
° A 2TT
3 41
|, = —— = 0.299207, |, = = 0.255572.
' aon YN

Therefore, the radial coupling a diminishes for higher
excited states.

Theradial equation (12.20) describestheradial pro-
file of a vortex. The angle dependence of the latter,
given by Eq. (12.11), defines the circulation velocity
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where g, is the unit vector corresponding to the polar
angle ¢. To be finite, this velocity requires that the
winding number be nonzero, m# 0.

Note that the Thomas—Fermi approximation is not
directly applicablefor solving Eqg. (12.20) in the case of
vortex states. This is because the corresponding solu-
tion

2
F20(r) = 2
" 2ar?

(r—0)
divergesatr = 0for m# 0.

12.3. Vortex Wave Function

The structure of the radial Hamiltonian (12.19)
shows that there are two qualitatively different regions
where either the nonlinear term or the harmonic oneis
more important as compared to each other. These
regions are

r < .Ja
r> .Ja

When r —»= oo, the harmonic term always prevails. To
find an approximate analytic solution to the radial
eguation (12.20), let us consider two cases, when the
coupling is not large and when o — co.

Inthefirst case, when a isnot large, say of order one
or less, the nonlinear region is small. The radial energy
E, can be obtained by the optimized perturbation theory
of Section 10.1. As the initial approximation, we may
take the harmonic Hamiltonian

(nonlinear), (12.21)

(harmonic).

oo = _iod” ,1do, lgee, mb
Moo= 30 T T oy (1229
with the eigenvalue
EQ = pu, p=2n+|m+1 (12.23)

and the eigenfunction

(0) 2nlu Imi
() = (o) "

Im +1_1/2

(12.24)
X eXpErs —urzDL‘nm‘(urz).

For the first-order approximation

EQ(a,u) = (FO A1), (12.25)
we find
EW - Pg,, 1o
Yia,u) = 2B1+LD+ulan(, (12.26)
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where
=}m © (14
= L f ()] rar
0

oo

_ n 2\n1 —2xp |m
| [X L, (x “dx.
[(n+|m|)'}_[ (L (0]
From the fixed-point condition
aiE(”(a u) = (12.27)
we define the control function
- [P =
u(s) s s = 2l,,0. (12.28)
For the optimized approximant
E.(s) = EX(a(s), u(s)) (12.29)
we abtain
E.(s) = vp(p+s). (12.30)
In the weak-coupling limit, Eq. (12.30) gives
E.(S)=p+2 s—%sz (s— 0) (12.31)
and in the strong-coupling limit, one has
12, P12 p2 =317
E.(s)=./p +3s -8 (12.32)

ass—» oo, Itisinteresting that if, being based on these
asymptotic expansions, we construct the self-similar
Crossover approximant

EY(s) = a(1+As)",
asisexplained in Section 11.1, then

1 1
aO = p: A = Bl n]_ = é!
and the crossover formula (12.33) coincides with the
energy (12.30).

To find the energy of the basic vortex with the quan-
tum numbersn =0 and m= 1, we note that |, = 1 and
lg = 0.5. The related control functions, given by
Eq. (12.28), are

(12.33)

1 [ 2
Ug = , Uy = .
Y Ji+2a’ 7 N2+a
The corresponding radial energies are
= J1+2a, Ey = J4+20.
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Then the vortex energy in the strong-coupling limit is

Qp =Egp—Eyp = ia—uz

2.2

This is to be compared with the critical rotation fre-
quency

(0 —= ).

2 I
Q.==In=0D.9=
= 5In9g

obtained in the Thomas—Fermi plus hydrodynamic
approximations [320] for atwo-dimensional vortex.

From the radial equation (12.20), it follows that its
solution behaves at small distance as

f(r)=cCr™@+cr?+cys*) (r— 0)

and at large distance as

(12.34)

1
f(r) Dr‘m‘expE—ErELLm‘(rz) (r — o). (12.35)
For the case when n = 0, we have

f(r)Dr‘m‘expE—%rE (r—-o).  (1236)
The crossover approximant, sewing the asymptotic

expansion (12.34) and (12.36), is
fo(r) = Cr“”exp%—%rﬁ arlexp(-bryd, (12:37)
0 0

where a and b are calculated from Eq. (12.20), after the
form (12.37) isexpanded in powers of r and substituted
into this equation. This makesit possible to expressthe
coefficients a and b through E, and C. The latter are
defined by the equations

Ef = (f., Arfy), (fi, fe) = 1. (12.38)
The accuracy of approximate solutions to Eq. (12.20)
can be characterized by the residual

R(r) = (H —E;) f(r)

and the dispersion

(12.39)

o’ EJ’l R(r)|*rdr. (12.40)
0

Considering the nonrotating case, with m= 0, we get
E’—a’C'-1
16a '

The dispersion (12.40) for the crossover formula (12.37)
is smaller than that for the variational function (12.24)
when a < 70.

a= %(1+0(C2—Er), b=
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Fig. 35. The self-similar crossover approximants f;; (r) for
the vortex as compared to exact numerical data marked by
diamonds: f7 (r) is shown by the solid line; 3 (r), by the

long-dashed line; f3 (r), by the short-dashed line; and
f} (r) ispresented by the dotted line.

In the case of the basic vortex with the winding
number m= 1, we have

. E . E-8aC’-4

asl 3 PTTm

The crossover function (12.37) is a better approxima-
tion than the variational function (12.24) for a < 15.

Thus, the crossover approximant (12.37) is a rea
sonabl e approximation for avortex wave function if the
coupling a < 10. For large a > 10, the error of the
approximant (12.37), characterized by the residual
(12.39) and dispersion (12.40), quickly grows. Therea-
son for thisis clear: In constructing the crossover for-
mula (12.37), we have used the information on the
behavior of the solution to Eq. (12.20) at small dis-
tance, when r — 0, which is described by the form
(12.34), and at large distance, whenr — oo, wherethe
harmonic term prevails, so that the asymptotic solution
is given by Eq. (12.36). At the same time, there is an

additional characteristic scaler ~ /a defining the dis-
tance at which the dominance of the nonlinear term in
the Hamiltonian (12.19) changes to that of the har-
monic term. The peculiarity in the behavior of a solu-
tion, due to this additional crossover, can be neglected

only if a is not large, so that the region 1 < r < J/a
squeezes to a small interval or practically disappears.
Thevalue a = 10 is exactly that critical value.

In order to analyze the behavior of the solution to
Eq. (12.20) for large coupling a > 10, let us consider
the case, opposite to the previous one, when there exists

awideregionl <r < Ja , where the nonlinear termis
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dominant as compared to the harmonic term. In this
region, Eq. (12.20) may be written as

1|:qu 1dfg, m”
202 rer+2rf+ af’

the harmonic term being omitted. To simplify the
analysis of Eq. (12.41), we scale it so that it reduces to
the equation

2
d’f,
dr? rdr ?

= Ef, (1241

+f—f>=0. (12.42)

The return from Eq. (12.42) back to Eq. (12.41) can be
done by the scaling

o
r— . J2Er, f—»J%f.

To construct a crossover solution in the region 0 <

r < .Jo, when o > 10, we need an asymptotic expan-
sionfor f(r) at r — 0 and another expansion for r > 1,

but r < Ja. For example, the ground-state solution,
with m = 0, behaves as

f(r)=C(l+cr’+c,”) (r— 0)
at small distance, the coefficients being
1 1
c, = 21(02—1), c, = 6—4(3C4—4CZ+1).

Andfor r > 1, the solution tendsto f(r) = 1

L et us concentrate on the vortex solution with m= 1.
Then at small distance, we have

f(r)=Cr(l+cr?+cr*+cy® (r—= 0),(12.43)

where
o, = 1 o -8C+1  _ 80C°+1
2 g 192 * °° 9216
At large distance, we find
1> 94 161
f(r)_1—2r 8r 16r (r>1). (1244

Employing the method of Section 11.1, we construct
[369] the self-similar crossover approximants

. : 1 1 21]_1/2
f*(r) = ér%+‘—1rm ,

* —
fZ(r) r%‘-l-—r +4 |:| )
(12.45)
*oy — L 32,34, 14
50 = Hi+a * g el

COURTEILLE et al.

1 —-1/8

94 16
P g S

The accuracy of the approximants (12.45) can be
checked by comparing them with the exact numerical

solution [307, 382] of the vortex equation (12.42). This
comparison is presented in Fig. 35, whereit is seen that

the approximant f} (r) practically coincides with the
numerical solution.

_ 1
fa(r) = T3

CHAPTER 13.
ELEMENTARY COLLECTIVE EXCITATIONS

Following the experimental realization of Bose—
Einstein condensate in trapped atomic gases, there has
been an intensive study, both experimental and theoret-
ica, of elementary excitations in these systems
[30, 31]. For the theoretical description of elementary
excitations one usudly employs two equivalent
schemes. One of them is based on the diagonalization
of the Hamiltonian in the Bogolubov approximation
[282, 300]. Another approach relies on the linearization
of evolution equations. The latter approach can be
accomplished in several ways which we illustrate
bel ow.

It is worth noting that collective excitations of
trapped atoms have many common features with col-
lective excitations in nuclei, that are also finite systems
where nucleons are trapped by means of self-consistent
potentials[383, 384], and with collective excitationsin
metallic clusters [385-387].

13.1. Linearization of Gross—Pitaevskii Equation

The Gross—Pitaevskii equation (9.5), when there are
no external time-dependent forces, reads

in92 = Ao, (13.)
with the nonlinear Hamiltonian
f(e) = -1 r: (13.2)

Recall that Eq. (13.1) is an exact equation for the
coherent wave function [291]. The similar equation (9.10)
is an approximate equation for the mean-field order
parameter [31].

Collective excitations are described by small oscil-
lations around a stationary solution given by the sta-
tionary equation

H(9n)dn(r) = Enda(r). (13.3)

One usually considers small fluctuations around the
ground-state function ¢q(r), though, in general, one
may consider oscillations around a chosen stationary
state d(r).
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Let uslook for the solution of Eqg. (13.1) describing
small deviations from a given stationary solution ¢,,(r).
To this end, we substitute the function

O(r,t) = [Dn(r) +u(r)e’™ + v*(r)e]

| (13.4)
ool

into Eq. (13.1) and linearize the latter with respect to
u(r) and v (r). Equating the like terms at the exponen-

tials exp(Fiwt), we get

[A(®,) —E,+ NA/p,|*~Fic] u+ NAp.v =0,
, (135
[A(,) —E,+ NA[p, >+ 7] v + NA($F) u=0.

This system of coupled equations, sometimes called the
Bogol ubov—De Gennes equations, definesthe eigenval ues
hw that are the energies of the elementary excitations.
For trapped atoms, these equations are usually solved
numerically [30, 31].

As an illustration, let us consider the case of a uni-
form potential U(r) = U = const. For the ground state
wave function

b0 = Jno, 19=90(0)|", (136)
the stationary equation (13.3) gives the energy
Eo = U+peA, po=nyN. (13.7)

The solutions u and v for the Bogolubov—-De Gennes
eguations (13.5) are plane waves of the form exp(ik - r).
Then Eq. (13.5) yields

This resultsin the Bogolubov spectrum

2 2
wa(K) = chk2+h2%ﬁ, (13.8)
inwhich
c= [Bop (13.9)
M

is the sound velocity. In the long-wave limit, the spec-
trum (13.8) reduces to the acoustic form

we(K) = ck  (k —=0).

When the potential U(r) is not a constant, the proce-
dure of calculating the spectrum of elementary excita-
tions is essentially more complicated and is usualy
done numerically. But by their physical meaning, the
corresponding excitations are the analog of phonons.

(13.10)
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13.2. Linearization of Hydrodynamic Equations

The Gross—Pitaevskii equation (13.1) can be rewrit-
ten in the form of hydrodynamic eguations. To this pur-
pose, one can present the coherent wave function in
terms of a modulus and a phase as

o(r,t) = J/n(r,t)exp{i(r,t)}, (13.12)
where the phase Sisreal and
n(r,t) = |§(r, t)°. (13.12)
The phase defines the velocity
vir, )= v b, (13.13)
Mg
so that the density current is
= 1t heve oV
nv = —2m0(¢ Vo-0oVo*). (13.14)

Substituting the presentation (13.11) into Eq. (13.1)

and separating the real and imaginary parts, one obtains

the continuity equation
on

a+VE(nv) =0

and the velocity-field equation

(13.15)

2+ v+ nan- — v+ ™E o 13.16)
ot 2mg/n 2gp

Equations (13.15) and (13.16) are completely equiva-
lent to the Gross—Pitaevskii equation (13.1) and are
termed the hydrodynamic representation of the latter. If
we are interested in the stationary ground-state solu-
tions, then Egs. (13.15) and (13.16) reduce to

ang

5t =0, vo=0,

(13.17)

where

Ny = No(r) = [do(r)|”
and ¢, satisfies the equation
A 2 _
_-Z-rﬁ—v do+ (U + NAJdo ) = Edy.
0

To analyze small deviations from the ground-state
solutions n, and v, one writes

n=ny+on, Vv =vy+dv. (13.18)
Linearizing EqQ. (13.15), one gets
9 5n+V(nedv) = O. (13.19)

ot
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Linearizing Eqg. (13.16), one assumesthat ny changesin
space much slower than én,
|Vng < [Von. (13.20)

Then one finds

Vﬂan_o
400

Combining Egs. (13.19) and (13.21), one comes to the
equation

m2 g sv+VENA- (13.21)

o2 0k o1?
6t26n = V(c"Von) — EiZmOV a on, (13.22)
in which
c(r)= E9(—r—)NA (13.23)

isalocal sound velocity. For the harmonically oscillat-
ing on, say, as coswt, one has

2
O0h v 50,

oo26n+V(c:2V6n) =m0
0

(13.24)

Note that for the uniform case, when ¢ = const and
on ~cosk - r, we return back to the Bogolubov spec-
trum (13.8). However, for the nonuniform case, the
local sound velocity (13.23) depends on the space vari-
able r. For low-lying excitations, one may neglect the
right-hand side of Eq. (13.24), which gives

wdn + V(czVén) = 0.

For a spherica trap, and using the Thomas—ermi
approximation for ny(r), the solutions to this equation
can be presented as

3n(r) = Pa(Nr'Yin(8,0),

where P'2n are even polynomials of degree 2n; Y,,,, are
spherical functions; and n, |, m are quantum numbers.
The dispersion law is given by the Stringari spectrum
[133]
2 1/2
Wy = We(2n" +2nl+3n+1) (13.25)
For cylindrically symmetric traps, analytical solutions
for the spectrum of elementary excitations are available
only for some particular modes [31]. For instance, the
scissors mode, generated by a sudden rotation of the
confining trap [146], has the frequency

w = '\/é('oOv

with the Thomas—Fermi approximation being again
involved.

COURTEILLE et al.

13.3. Lagrangian Variational Technique

For solving complicated nonlinear differential equa-
tions in partial derivatives, a variational technique has
been widely used [388], which provides approximate
solutions to such equations. The basic idea of this vari-
ational method is to take a trial function with a fixed
shape but some free parameters in order to reduce the
infinite-dimensional dynamical system of partial differ-
ential equations to a set of ordinary differential equa-
tionsfor thevariational parametersthat characterizethe
solution. This technique has al so been applied [389] to
solve the time-dependent Gross-Pitaevskii equation
and to calculate collective-excitation frequencies.

The first step of the method is to formulate a varia-
tional problem that yields the considered differential
equation. This can be formulated as the problem of
extremizing an action

6IL(t)dt =0, (13.26)
in which the Lagrangian
L(t) = J’iB(r,t)dr (13.27)

is expressed through the Lagrangian density. In our
case, the latter is

D(r,1) = —Lnpr20 200
, (13.28)
+ v+ Ulg)? + 1NA|¢|“

2m, 2 '

As is easy to check, the extremum condition (13.26),
resulting in the Lagrangian equation

dtod 6¢ (13.29)
where ¢ = dd/dt, for the Lagrangian density (13.28),
yields the Gross—Pitaevskii equation (13.1).

For the general anisotropic confining potential, it is
convenient to pass to dimensionless gquantities as
defined in Section 9.3 and also to measure timein units

of u)gl. The return to the dimensional notation is done
by the substitution

L(r, 1)

L(x,t) — TN

0

t — ot

The dimensionless Lagrangian density is

LOU Qy*
2 at at“%

3 2
41 Z oy
2 o0X:
i=1 1
For a while, there were no approximations, so that all
transformations are exact.

L(x, 1) = —=

(13.30)
1
roixDe doui’
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Now, instead of varying the action with respect to
and y*, let us present the sought solution in the Gauss-
ian form

3
P(x,t) = |_| Wi(x, 1),

.()

(X.,t)—C(t)eXpEr [x —a()]® (13.31)

oy ()X +iB(OX D
0

From the normalization (Y, ¥;) = 1, we have

c)| = [u (t)}

Then, with the ansatz (13.31), we caculate the
Lagrangian (13.27), which can be done explicitly
because of the Gaussian dependence of the tria func-
tion (13.31) on the space variable x;. After this, we
assume that the set of yet unknown trial functions u;(t),
a(t), a;(t), and B;(t), where i = 1, 2, 3, satisfies the
Lagrange equation

14

(13.32)

in which g(t) is any function from the given trial set.
This assumption reduces the infinite-dimensional prob-
lem of solving Eg. (13.1) to afinite-dimensional prob-
lem of ordinary differential equations. As is clear, the
ansatz (13.31), together with the assumption (13.32),
defines approximate solutions to Eq. (13.1), whose
accuracy cannot be controlled.

Note that the described reduction of the partial dif-
ferential equations could be done as well for a time-
dependent trapping potentia U(r, t) in the Hamiltonian
(13.2). Since, till now, we have nowhere used any
linearization procedure, the reduced set of equations
can, in general, describe nonlinear motion.

From the set of equations (13.32), one can derivethe
equations

ia+wa =0 (13.33)

for the center-of-condensate variables that harmoni-

cally oscillate with the bare frequencies wy. The oscil-

lations of the atomic-cloud shape are characterized by
the frequencies u;, for which we get the equations

.2

Ui—gz’—lj +2ui(ui2—ooi2) +sui2A/ulu2u3 =0, (13.39
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where the standard notation
2
S= gs/z
(2m)
is employed. Introduci ng the effective cloud widths
bi(t) = (13.35)
Ju .( )
one may transform Eq. (13.34) to the form
.. 2 _ S i
bi+w'b = 35.5,5;, + bi3. (13.36)

The stationary solutions to Eqg. (13.36) are given by the
eguation

s(b)’
W0 = 1
2b7 b3 b3
In order to find the frequencies of collective excita-
tions, one has to consider small deviations of the vari-
ablesb; near their stationary points b* . To thisend, one

substitutes

(13.37)

b, = b* +3b, (13.39)

into Eq. (13.36) and linearizes the latter with respect to
ob;. Thisresultsin a system of three differential linear
equations whose harmonic solutions, say of the form
coswt, give an algebraic system of equations. Equating
the determinant of the latter system to zero, one comes
to an equation for the spectrum of collective excita-
tions. For example, following this procedure in the case

of an isotropic trapping potential, when w, = 1, b* =

b*, and neglecting the term 1 in the right-hand side of
Eq. (13.37), which assumes that s> 1, so that

« = 8]
b* = =55 (13.39)
we abtain the system
(w°=3)3b, —8b,— b, = 0,
— (0’ =3)8b,+3b, = 0,
b, + 8b, — (w*—3)8b, = 0.
Equating the determinant to zero yields
(0 =3)°—3(w’=3)-2 = 0.
This leads to the spectrum
€1, = 2, & = 5. (13.40)

The equations for the effective cloud widths b;,
similar to Eq. (13.36), can aso be derived [31] from the
hydrodynamic equations (13.15) and (13.16), by
assuming the harmonic dependence of the density
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n(r, t) on the space coordinates and a special form of
the velocity v(r, t).

CHAPTER 14.
MULTICOMPONENT BOSE MIXTURES

Multicomponent systems of trapped Bose-Einstein
condensates have been realized for rubidium in a mag-
netic trap [7, 123] and for sodium in an optical trap
[78, 125, 126]. There exists a number of works with
theoretical treatment of such systems (see[7, 390-392]
and references therein).

14.1. Coherent States of Mixtures
The Hamiltonian of a multicomponent Bose mix-

ture has the form
H = 3 [0l (0] =G + Ui 0 |, ar
i (14.1)

¥ %ZJ’llJiT(r, W, OP(r =)W, Hi(r, Hdrdr,
i]

%
2m,

in which the index i = 1, 2... enumerates the compo-
nents; m isamass; U, (r, t) isan external field including
the trapping potential; the interaction potential ®;; has
the symmetry properties

®;(r) = ®y(=r) = Py(r);

and y; (r, t) arefield operators satisfying the Bose com-
mutation relations,

[Wi(r, ), W/ (r, 1] = 8;8(r —r).

The evolution equations for the field operators are
given by the Heisenberg equations that can be written
in one of two equivalent forms: in the commutator form

., 0
hsewy(r, 1) = [Wy(r.1), H]
or in the variational representation

5 5H
7wt = .
5w SY(r, 1)

Any of these representations yield the same equation

S0 = H (), (14.2)
in which
#°v?
Hi(w) = - Zm +U,(r,1)
(14.3)

3 [P =ru (D D

COURTEILLE et al.

Coherent states can be defined as is described in
Section 8, with a straightforward generalization for a
mixture. The coherent state h, for thei-component isan
eigenvalue of the destruction operator ;, so that

gi(r, t)h; = n;(r, t)h;. (14.4)

The coherent state for a multicomponent system is
given by the tensor product

h = Oh,.
The action of an operator ; on the state h is defined as
Wi(r, t)0,1h = ny(r, Hh.

Multiplying Eq. (14.2) from the left by h* and from the
right by h, we obtain the evolution equation

ih(%r]j(r,t) = H,(m)n,(r, 1) (14.5)

for the coherent field n; (r, t), with the effective nonlin-
ear Hamiltonian

22
() = =T+ U,
(14.6)
+ZJ’CDij(r—r')|r|i(r', t)|2dr'.
By means of the notation
ni(r. 1) = JNgi(r. 1), (14.7)

we may introduce the coherent field ¢; normalized to
unity, (¢;, ¢;) = 1, so that N; plays the role of the num-
ber of particles in the i-component. Then, for the nor-
malized coherent field, the evolution equation is

iﬁgiq’i(r't) = Hi(®)9;(r, 1), (14.8)
with the nonlinear Hamiltonian
~ h2V2
Hi(¢p) = - om +U(r, 1)
(14.9)

+ 3 Nif@(r =r)[i(r, ] dr.

In the case of a dilute system of atoms, whose scat-
tering lengths a; satisfy the inequality
3 <1, (14.10)
a
in which a is the mean interatomic distance, one may
model the interaction potentia by the Fermi pseudopo-
tential

®;(r) = A;o(r), (14.11)
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with the interaction amplitude
2 a” mi m

= 21 L (14.12)

m; T m+m,

By assumption, a; = &;, hence A; = A;. Then the non-
linear Hamiltonian (14.9) becomes

Ai(o) = ”

. (14.13)

i

The stationary solutions of Eq (14.8), when the
external potential U; (r) doesnot depend on time, can be
presented as

0,(r.0) = ¢,(NexplHEH,

with the coherent modes ¢;(r) defined by the eigen-
problem

(14.14)

Hi(0)d;(r) = E;o;(r). (14.15)

Note that, in the same way as for single-component
systems, the evolution equation (14.8) is an exact equa-
tion for the coherent field ¢;(r, t). So is the eigenprob-
lem (14.15) for the coherent mode ¢, (r) in the station-
ary case.

14.2. Branching of Excitation Spectrum

The spectrum of collective excitations for a multi-
component Bose mixture can be defined by means of
the same methods as for a one-component system, asis
described in Chapter 13. For instance, one may linear-
ize the nonlinear equation (14.8) after substituting there

0;(r,t) = [&;(r) +u,(r)e’ +vi(r)e”]

(14.16)
X exp —E %

The linearization with respect to the functions u; and v,
yields the system of equations

(fiw—F(9) + E)y,

—ZNiAij(q)i*Ui"'(l)iVi)q)j =0,

) (14.17)
(Aw+Hj(d)-Ej)v;

+zNiAij(¢i*Ui+¢iVi)¢i* =0,

where H; (¢) is defined on stationary solutions ¢ (r).

For a nonuniform system, Egs. (14.17) are to be
solved numerically. In order to demonstrate the main
specific features distinguishing the case of a mixture
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from that of a single-component system, let us cons der
the uniform case, when the external potential U,
const. This case can be treated as a uniform approxi ma-
tion for alarge trap. In this approximation, the ground-
state stationary solutions of Eq. (14.15) can be written
as

0;(r) = Jn;, n=0,(0), (14.18)
and the corresponding energies as
E =U+ ZniNiAij. (14.19)

Thenu; and v; are presented by plane waves of theform
ek ". Therefore, we have

2.2
KEhk

and asimilar relation for v;. Using this, we may present
Egs. (14.17) intheform

(hw—Kj)uj_sziAij(ui +v;) =0,
‘ (14.20)
(hw+K))v;+ ZMNiAij(ui +v,) = 0.

To simplify the consideration, let us analyze the case of
a two-component mixture. Then Egs. (14.20) form a
system of four linear algebraic equations. The condi-

tion of having nontrivial solutions is that the determi-
nant be zero. This condition can be presented as

D -%wl = 0, (14.21)
where D isthe dynamical matrix, whose elements are

Dy, = /NNy NyA,,
Dy = J/NiN;N; A,

Dy = Ky +nNJA,

Dz =nNjA;;, Dy =Dy,

D = Ko+ mNyAz,  Dog =Dy, Doy = NpNyAg,
Dy = —Diy3, Dz = =Dy, Da = —Dyy,
Dy = =Dy, Dy = =Dy, Dy = =Dy,

Dsi = =D, Dayy = —Dop.

To write down Eq. (14.21) explicitly, it is convenient to
introduce the following notation:

2Dk

wA(K) =Pk + 7 [QmID

(14.22)
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which would define a single-component spectrum with
the sound velocity

P p=nN:
miAII’ pl_nINH

and let us also denote

Wi (K) = ek’

2 | P1P2
Cp Agp.
m,m,

Then from Eq. (14.21), we find

c (14.23)

(14.24)
with

(14.25)

(0 =) (W = 02) = Wiy (14.26)

The latter equation yields for the spectrum

Wl(K) = 3[0f + 0 2 (0] )" + o] (1427)

This means that, instead of one branch (13.8) for the
spectrum of collective excitations of a single-compo-
nent system, we now have a two-branch spectrum,
given by Eq. (14.27) for a two-component mixture. In
genera, for an n-component mixture, we should have n
branches of the excitation spectrum.

In the long-wave limit, Eq. (14.27) gives two acous-
tic branches

w, (k) =,k (k—=0), (14.28)

with the corresponding sound velocities ¢, defined by
the expression

cf = %[cf + c§ * J(cf - cg)2 + 4cf2] : (14.29)
In the short-wave limit, one has two single-particle
branches
k2
(k) = 70
The two branches of the collective spectrum of a
two-component mixture can be interpreted in the fol-
lowing way. One branch, w,(K), describes the oscilla-
tion of thetotal density of the mixture, when both com-
ponents move together. And another branch, w_(K),
characterizes the relative fluctuations of the compo-
nents with respect to each other. It is worth noting that
neither of the sound velocities ¢, coincides with the
hydrodynamic sound velocity ¢ defined by the deriva-
tive c? = 0P/dp,,,, in which P is pressure and p,,, is mass
density.

(k —= o). (14.30)

14.3. Dynamic and Thermodynamic Stability

The mixture of trapped atoms is not always stable
and it may stratify into subsystems of pure one-compo-

COURTEILLE et al.

nent phases [7, 390-392] in the same way asit happens
for uniform Bose mixtures [393—-395]. The criteria of
stability can be separated into dynamic and thermody-
namic ones.

The system is dynamically stable if its spectrum of
collective excitations is positive everywhere, except for
acountable number of pointswhereitiszero. For auni-
form two-component Bose mixture, the condition of
dynamic stability is

w, (k) >0. (14.31)
With the spectrum (14.27), this gives
W2 (K) w5 (K) > 0y (K). (14.32)

Since w_(k) < w,(K), we actually need to analyze stabil-
ity only for the branch w_(k). This branch describes rel-
ative oscillations of components with respect to each
other. When w_(k) becomes negative, the mixture is
unstable with respect to the stratification of the compo-
nents.

In the long-wave limit, kK — 0, the inequality
(14.32) reduces to

Cf c§ > cfz. (214.33)
Using Egs. (14.23) and (14.25), we have
AnAy > Al (14.34)

Taking account of the relation (14.12), we find the con-
dition of dynamic stahility for the scattering lengths,

auray, > (Mt M) o (14.35)
11422 4m1m2 12+ .
The equality
8118 _ (my + m2)2 (14.36)

2
as, 4m;m,

defines the stratification boundary. It isinteresting that
the condition of dynamic stability is the same for uni-
form aswell asfor trapped mixtures [391, 392].

The system is thermodynamically stable if its free
energy is minimal. At zero temperature, free energy
coincides with internal energy. Here, we consider the
case when the whole system is in a coherent state, so
that we need to compare the average energies of the

LASER PHYSICS Vol 11

No. 6 2001



BOSE-EINSTEIN CONDENSATION OF TRAPPED ATOMIC GASES

given coherent state for the mixture and for the strati-
fied system. The Hamiltonian of the latter writes

Hstr = zHi V= zvi’
i i

242

H= [l o[-

+ Ui(r,t)}lpi(r,t)dr
(14.37)

* %_I-quT(ra O, P —r) P, D(r, Hdrdr.

This describesindependent pure components separated
in their own regions of space.

For simplicity, we again employ the uniform
approximation when the coherent field for each compo-
nent can be written as

V™% (mixed)
(=0 .,
OV, " (dtratified)
according to the case of a mixed or stratified system,
respectively. For a two-component system, one has
N=N;+N,, V=V, +V,. (14.39)

We assume that al particles N; and N, are in their
coherent states characterized by the ground-state
coherent fields (14.38). Then the quantum coherent
average of the Hamiltonian (14.1) gives the energy of
the mixture

[HOL = N.U, +NoU,
+ NfAn + NgAzz + 2NN, A,
2(V,+Vy) '

And the quantum coherent average of the Hamiltonian
(14.37) yields the energy

(14.38)

(14.40)

2 2
NlAll + N2A22

D_|str|:l\| = N1U1+ N2U2+ 2V1 2V2

(14.41)

of the stratified system.
The condition of thermodynamic stability is

([HO, - HgM) <O,
From here, we find

(14.42)

NZVZA, + N2VEA,, — 2N, N,V,V,A, > 0. (14.43)

In an important case, when A;; and A,, are positive,
condition (14.43) reducesto

2
(NlVZ All - N2Vl A22)

(14.44)
+ 2NN,V Vo(J AL A, —Agp) > 0.
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To be stable in general, any system has to be both
dynamically as well as thermodynamically stable, so
that both conditions (14.34) and (14.43) bevalid. Let us
analyze the relation between these conditions for dif-
ferent particular cases:

(i) Aq1, Apy, Ag, > 0. The condition of dynamic stabil-
ity (14.34) is stronger than that of thermodynamic sta-
bility (14.43) in the sense that from the former the | atter
follows. Dynamic stability is sufficient for thermody-
namic stability, although not necessary. A system can
be thermodynamically stable, but not dynamically sta-
ble. Conversely, thermodynamic instability yields
dynamic instability.

(i) Ayq, Ay >0, Aj, < 0. The mixture is always ther-
modynamically stable, but not necessarily dynamically
stable.

(iii) Aq; and Ay, are of different signs, while A, is of
arbitrary sign. The system is never dynamically stable,
although it can be thermodynamically stable.

(iv) Ay, Ay <0, A, > 0. The system is never ther-
modynamically stable, but can be dynamically stable.

(V) Aj1, Ays, A, < 0. Then inequality (14.43) can be
transformed into

2
(N1V2«/|A11| =N,V A22|)

+2N; N,V Vo (| A Ayl —|Aggl) <O.

The latter inequality cannot be compatible with condi-
tion (14.34), so that dynamic stability leads to thermo-
dynamic instability and thermodynamic stability pro-
vokes dynamic instability.

Summarizing this analysis, we conclude that the
two-component Bose mixture is both dynamically and
thermodynamically stable provided that

Ay>0, Ay,>0,

and condition (14.34) isvalid.

Here, we have analyzed the conditions of stability
for a coherent mixture. The same conditions can be
obtained for a liquid mixture with broken gauge sym-
metry, when only a fraction of atoms are in the Bose
condensate [393, 394], and also for anormal mixture of
Bose liquids without broken gauge symmetry [395].

The first experiments [7, 123] involving multiple-
species condensates were performed with 8Rb atoms
evaporatively cooled in the |F = 2, me = 2[0and |1, —10J
spin states. The scattering lengths, known at the 1%
level, areintheproportionay; : @;,: a, =1.03:1:0.97,
with the average of three being 55 A [122]. For equal
masses m, = my,, the stability condition (14.35) reads

(14.45)

ayay, > afz . In the case of &’Rb, one has a;;a,,/ afz =
0.9991 < 1. Hence, these two condensates cannot com-
pose a uniform mixture. The Bose condensates of
sodium [78, 125, 126] in two different internal states
|[F =1, m: = O0and |1, 10have the scattering lengths
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a;; = 3, = 275 x 10° cm and a,, = 2.65 x 10° cm.

From here, one hasa;;a,,/ afz =0.964 < 1, thencethese
condensates cannot be mixed.

14.4. Sratification of Moving Components

It is possible to experimentally create a binary mix-
ture of trapped Bose-Einstein condensates with arela-
tive motion of components [123]. The presence of such
a motion should impose additional constraints on the
stability of amixture.

Consider a coherent mixture of components, each of
which moves with a constant linear velocity V;. For the
sake of simplicity, let us again invoke the uniform
approximation, when the ground-state coherent field of

an immovable component is ,/n; . Then for a moving

component, because of the Galilean transformation,
one has

ik [t m:
o,(r) = Jne ', k,.s#vj. (14.46)

The eigenvalue of Eq. (14.15) becomes

E = U, +ZpA,J+ mV (14.47)

where p; = n;N;. As compared to the ground-state
energy (14.19), we have here an additional term corre-
sponding to the kinetic energy of motion. Similarly, for
the coherent averages of the Hamiltonians (14.1) and
(14.37), we would obtain the expressions (14.40) and

(14.41) with additive terms 2" m,V; . These terms

cancel each other when analyzing the condition
(14.42). Hence, thermodynamic stability is not affected
by such amotion of components.

To check dynamic stability, we need to find the
spectrum of collective excitations given by the frequen-
cies w satisfying Egs. (14.17). The solutionsu; and v; to
the latter equations, in the case of the coherent fields
(14.46), depend on the space variable as

j ei(k+kj)Ei" VJ-D ei(k—kj)lj,
which isrequired for ¢;(r, t) to have the same Galilean
transformation as ¢ (r). Then it follows that

(Hi(9) —E)u; = (K; +4k IV))u;,
(Hi(¢)—E))v; = (K, =k DV))v;.

Therefore, Eqgs. (14.17) retain practically the same
form, but with the frequency w shifted as

Ww— w-§, &=k,
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which corresponds to the Doppler shift.

Consider now abinary mixture. Without loss of gen-
erality, we may connect the system of coordinates with
one of the components, say with the first one, so that
V,=0. ThenV, = v isthe velocity of the second com-
ponent with respect to the first. The dynamical matrix
D= [D;] in the spectral equation (14.21) has the same
€lements except

In general, instead of Eq. (14.26), we now have

[(0-&) —w][(@—¢,)"~w;] =wh. (14.48)
In the chosen system of coordinates, connected with the
first component, Eg. (14.48) simplifiesto

(W= ) [(w-8)°~w;] = wi,, (14.49)

where
e=k ¥ = kvcosd. (14.50)

The spectral equation (14.49) is the fourth-order alge-
braic equation

4 3 2 2 2 2
W —-2ew —(W; +w,—¢€
(g # @z =& )00 (14.51)
2 2
wlz—s w; = 0.

+ stfoo + wfooz
Asweknow, this equation can define not more than two
stable, that is positive, solutionsfor the spectrum c.(K).
By Descartes theorem, the necessary condition for
Eq. (14.51) to possess two positive solutions for arbi-
trary € O [-kv, +kv] is

oofuﬁ > oofz + szoof : (14.52)
Since thisinequality isto be truefor al § O [0, 1], we
can put here the maximal € = kv. In thisway, we obtain

W2W5 > Wy + (W kv (14.53)
In the long-wave limit, kK — 0, this gives
cic>ch, +civ? (14.54)

Even if the immovable components do mix, they strat-
ify as soon as the relative velocity reaches the critical

value
2 2 4
a/C1C> —Cyp

V. =
Cc C]_

(14.55)

The stratification appears first inside the cone of the
angle

%
9. = arccos—\7° : (14.56)
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With the notations (14.23) and (14.25), the condition
(14.54) becomes

2
2 m2 74

ApAy>Ap + _p A1,
2

(14.57)

while for the critical velocity (14.55) one gets

y2 = P2
=
myAqy

Invoking the relation (14.12), we find the stability con-
dition

(AuAy—AD). (14.59)

2 2 2
dq 8y > (m; +my) + MV ay

2 2 2
ap MM, 4ri®p,ar,

(14.59)

expressed through the atomic scattering lengths. And
the squared critical velocity (14.58) takes the form

2 2 2
2 _ AmhTprap| apay, (Mg +my)
c = 2 -

a, 4mym,

}. (14.60)

2
Myay

Thevalue of the critical velocity (14.60) depends on the
parameters of the species involved. For instance, in the
case of akali atoms, my/A ~ 10° slen?, ayy ~ @y, =
5.5 x 1077 cm, from where

ath’a’ _ >
gt d
m, S
Typical atomic-trap condensate densities are p, ~

10%2-10" cm3. But what is needed first of all in order
to have afinite critical velocity is that immovable com-
ponents could be mixed, which requires the positive-
ness of the expression in the square bracket of
Eq. (14.60).

14.5. Mixing by Feshbach Resonance

By definition, Feshbach resonances involve inter-
mediate states that are quasi-bound [396]. These inter-
mediate states are not bound in the true sense, as they
acquire afinite lifetime due to the interaction with con-
tinuum states of other scattering channels. The metasta-
ble objects, formed in the process of the Feshbach res-
ohance atom—atom scattering, are molecules with elec-
tronic and nuclear spinsthat have been rearranged from
the spins of the colliding atoms by virtue of the hyper-
fineinteraction. It isimportant that the difference of the
initial and intermediate state energies can be varied by
means of an external magnetic field. The effective scat-
tering length that describes the low-energy binary col-
lisions similarly varies with the near-resonant magnetic
field. Thus, employing the Feshbach resonances, it is
possible to create two-component mixtures consisting
of atoms and of molecules formed by these atoms.
Since the overlapping components can be either stable
or unstable with respect to stratification, depending on
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the relation between their scattering lengths, one could
render the components miscible or immiscible by vary-
ing their scattering lengths. The Feshbach resonances
were recently observed in ultra-cold atomic gases of
8Rb [12] and #Na [11]. An important feature of the
experiment [11] is that the Feshbach resonances were
observed in an atomic Bose-condensed system. In this
way, it looksfeasibleto create atwo-component system
of Bose-condensed atoms and molecules, with rather
rich properties and with a variety of applications[26].

When two atoms of mass m, each form a Feshbach
guasi-molecule, the mass of the latter is

m, 02m,. (14.61)
Starting with a total number of atomsin atrap, N, one
canform, viathe magnetically controlled Feshbach res-
onance, N, molecules coexisting with N; unbound
atoms. Then, between the number of unbound atoms
and that of molecules, there is the relation
N, +2N, = N. (14.62)
This conservation law for the total number of atoms
imposes the relation
Ha = 2Hy (14.63)
between the chemical potentials of molecules, p,, and
of unbound atoms, ;.

The Hamiltonian of an atomic-molecular mixture
can be presented as

e T &
H = i;‘[wi (r)D_ 2mi

2
#33 [WOW])P,E -r)u WO (
ij

Wt Uigq}i(r)dr

14.64)
+ %pul(r)wl(r)elz(r —P)y(r)drdr

# 3[R Oar =)y )ar

where the last two terms describe the atom—molecule
reaction with atransition amplitude having the symme-
try properties

Opp(r) = Op(—T) = Oy(r).

Note that the global gauge symmetry, connected
with the transformation g, — €“y); is broken for the
Hamiltonian (14.64). However, it possesses the gauge
symmetry with respect to the transformation

(14.65)

W, —e"y, (20, = ay), (14.66)
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which is related to the atom-number conservation law
(14.62). The anomalous averages

DUJJ'D: EIJqujD =0,
L, Y= WP, = 0,

and alike, which are not invariant with respect to the
gauge transformation (14.66), are zero. But the aver-
ageslike

(14.67)

[ W, 0% 0, (14.68)

that areinvariant with respect to the transformation (14.66),
are not zero.

The Heisenberg equations for the atomic, ,, and
molecular, Y,, field operators can be written as

20, 1) = HaW)a(r, 1)
31, O [On(r —r)W(r, e

5 (14.69)
iﬁa—th(r,t) = Hy(Q)wy(r, t)
+3[@ur ~r )L, DUL(r, D,
where the notation
22
H() ==L+ U
| (14.70)

Y LRI DI
]

isused.

Assuming dilute gases, one models the interaction
potentials and transition amplitudes by local functions

®;(r) = AjO(r), Op(r) = Bpd(r). (14.71)

Supposing that the whole mixture isin a coherent state,
one has for the corresponding coherent fields

1201 = [Fa(0) b, + JN;BL07 b,
; ) \ (14.72)
52, = [Fa() ~Hol, + —2=B,01,

2N,
where p; = N;/V and
nv?
2m,

Fi9) = -

2
UUUDEDY N A0 (14.73)
j=1

Looking for stationary solutions of Egs. (14.72) in
the standard form (14.14), we see that the related ener-
gies E; are connected with each other by the relation

E, = 2E,. (14.74)
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Introducing the notation
E=E, +p,, (14.75)

we obtain the following equations for the stationary
coherent fields:

|:ll(q))q)l(r) + «/WzBlzq)f(r)q)z(r) = E@,y(r),

Fa(0)05(r) + —Bd2(r) = 2E0,(r).

2N,

Wanting to study collective excitationsin this react-
ing mixture, we may linearize Eqs. (14.72) after substi-
tuting there the form (14.16). Thisresultsin the system
of four equations

(hw—Ha(9) + E)u; — /N,Bro(91 Uy + V1)

(14.76)

2
- z NiA (0 U +¢;v)o, = 0,
(hw+ |:|1(¢)_E)V1+A/W2812(¢1V2+¢§U1)

2

+ Z N AL (O U+ divi)dr =0,
=1 N (14.77)

(hw—Hz(9) + 2E)u2_ﬁ812¢1u1

- z NiAL(G U+ 0vi)d, =0,

Ny

o
+ Z NiA(dF U+ divi)o; =0,

(ho+ Ha($) —2E) v, + —=Bp,07 v,

where H; (¢) are defined for the stationary states ¢; (r).

In the uniform approximation (14.18), the stationary
eguations (14.76) yield

E=U;+piAn+PoAL+ «/528121
P1

2./p,

Under given values for A;, Ap Ay, and By,
Eq. (14.78) defines the relation between the atomic
density p, and the molecular density p,. Sincep; =n;N;,
this means that the number of unbound atoms N, and
that of molecules N, are not arbitrary but are related
with each other through Egs. (14.78).

(14.78)

2E = U+ piAp +poA, + Bis-
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Keeping in mind the uniform approximation, when
n; = 1/V, and looking for the solutions of Egs. (14.77) in
the form of plane waves €X', we come to the equations

(hw— Kl)ul_«/azBlz(Uz +V,)

2
- z PiAI(u + V) =0,

i=1

2
P1
(Aw—Ky)u,——=Bpu; — ) piA(u+Vv;) =0,

(14.79)
(hw+Ky)v,+ /\/52812(‘/2 +U,)

2

+ Z PiAIL (Y +Vv;) =0,

i=1
2
P
(fiw+Ky)v,+ 752812‘/1 + ileiAiZ(ui +v;) = 0.
The spectral equation can be presented asin Eq. (14.21),
but with the dynamic matrix having the elements

Dy = Ki+pAy, Dy = p2A12+A/p_28121

Dy = p1An + «/52812: Dy = poAw,
_ P1 _

Dy = p1A+ —=B, Dy = Ky +poAy,
N[

Dy = P1A12s Doy = PoA%, Dy = —Dys,

Dy = —Dy, Daz3 = Dy, Day = —Dyy,

Dy = D3, Dgp = —Dosy Dy = Dy,
D44 = _D22.

The general form of the spectral equation israther cum-
bersome, so we shall not write it down. Some particular
cases have been studied in [26].

Similarly to Section 14.3, we can study the stability
conditions for the atom—molecule mixture. For exam-
ple, to find the condition of dynamic stability, we need
to find the inequality guaranteeing the positiveness of
the collective excitation spectrum corresponding to the
oscillation of componentswith respect to each other. To
derive the condition of thermodynamic stability, we
have to compare the coherent average of the mixture
Hamiltonian (14.64), which in the uniform approxima-
tionis

[HEL = Ny(Ug—Hy) + Np(Uy — 1)

L NiAL + 2NN, AL + Ny Ay
2(V,+Vy)

+ le\/EZBlZI
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with the energy (14.41) of a stratified system, where U;
isto be replaced by U; — ;. Then the condition of ther-
modynamic stability (14.42) becomes

2,2 2,2
N1VoA; + NoViA, —2N; N,V VLA,

_2N1A/ NZVVlVZBlZ > 0.

The sufficient stability conditions for each component
separately are Ay; > 0 and Ay, > 0. If so, the condition
of thermodynamic stability of the mixture reads

2
(N;Va /AL =NV JA)
+2N;NLV Vo (VAL A, — Ar)

_2N1A/ N2VV1V2812 > 0

From here, the sufficient condition of thermodynamic
stability is

B12D2

Auhp > Hap + —2 (14.80)

Jo

where p, = N,/V. Since the low-energy Feshbach reso-
nances make it feasible to vary the effective scattering
lengths by a near-resonant external magnetic field, one
could realize different experiments with stable mix-
tures as well as with stratifying components.

CHAPTER 15.
TOPOLOGICAL COHERENT MODES

Coherent modes are defined in Chapter 8 as station-
ary solutions of the Gross—Pitagvskii equation. The
ground-state coherent mode, with a single-particle
energy E,, corresponds to the Bose—Einstein conden-
sate. In an equilibrium statistical system, the Bose-con-
densed state is always the ground single-particle state.

An intriguing question is whether one could create
non-groundstate condensates of Bose atoms, that is, a
macroscopic occupation of a hon-ground single-parti-
cle state. Clearly, if thisis possible, this could be done
only in a nonequilibrium system. Second, in order to
transfer atoms from a single-particle ground state, with
an energy E,, to another state of higher energy E;, one
should subject the system to the action of a resonance
field with afrequency close to the transition frequency
(E — Ep)/h. Hence, thisis to be a resonance process.

The possibility of the resonance formation of non-
groundstate condensates of Bose atoms was first
advanced in [139], these condensates being associated
with excited coherent modes. Such nonlinear coherent
modes have also been considered recently in[140, 397,
398]. One often terms these excited coherent modes as
topological in order to stress their distinction from ele-
mentary collective excitations. The latter correspond to
small linear oscillations around a state, thence these
small oscillations do not change the macroscopic den-
sity distribution in space. But different coherent modes
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have principally different space dependence, because
of which they are termed topological.

15.1. Resonance Field Modulation

The Gross—Pitaevskii equation, describing a coher-
entfield ¢ = ¢(r, t), is
00 _ A ~
mﬁ = [H(¢) + Vel §, (15.2)

where, in addition to the nonlinear Hamiltonian

A(¢) = —%nz—ovz +U(r) + NAl[%, (15.2)
we include aresonant field
Vies = V(1) coswt + V,(r)sinwt. (15.3)
We assume that at the initial time the system is Bose-
condensed to the ground state
¢(r,0) = 9o(r), (15.4)

characterized by the energy E,,.

The transition frequencies between coherent modes
are given by the equation

o, =E,—E,, (15.5)

in which the spectrum of coherent modes is defined by
the eigenproblem

H(®n)¢n = Endn

Suppose that our aim is to transfer atoms from the
ground state ¢, to a chosen state ¢;. Therefore, we
require that the frequency of the modulating field (15.3)
be close to the transition frequency

E —E
= — - 0 (15.6)
The closeness implies the quasiresonance condition
A0 <1, Aw=w-q. (15.7)
W

Another important requirement is that the spectrum of
coherent modes be not equidistant [139]. In fact, if that
were the case, then the pumping of atoms from the
ground state to the chosen particular state would, at the
same time, induce transitions from the latter to another
equidistant state and from the | atter to even higher equi-
distant states. Thus, al atoms would be dispersed over
al states making it impossible to achieve a macro-
scopic population of one of them. Fortunately, as is
shown in Chapters 10 and 11, the spectrum of coherent
modes is not equidistant because of the nonlinearity
induced by atomic interactions.
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Let uslook for the solution of Eqg. (15.1) in theform
of the sum

O(r,t) = > cn()on(r, 1) (15.8)

over the coherent modes

0ol 1) = 0,(r) P E,E]

It is worth noting that the presentation (15.8) does not
requirethe set {$,(r)} toform acomplete basis. Ascan
be checked in any textbook on Quantum Mechanics or
Functional Analysis, the property of completeness of a
basis presupposes that an arbitrary function from the
considered Hilbert space could be presented as an
expansion over this basis. We do not require here such
a restrictive property for all functions, but we invoke
just the sole expansion, looking for a solution in the
form of (15.8).

What we need in the following is the assumption
that the coefficients ¢, (t) in the sum (15.8) vary intime
slower than the exponentialsin ¢(r, t), that is,
dc,

dt

Looking for asolution in theform (15.8), one hasto
substitute it into Eq. (15.1). To obtain equations for the
coefficients c,(t), one may invoke the averaging tech-
niques[399]. Thisis possible because, according to the
inequality (15.9), thefunctionsc,(t) can be classified as
slow, compared to the fast functions exp(—E,t/A).
Thus, ¢,(t) can betreated as quasi-invariants. Multiply-

ing Eq. (15.1) by ¢7 (r, t) and integrating the result
over r and averaging over time as

<E, (15.9)

(15.10)

. 1T
T"IQOEIF(t)dt’

0
keeping ¢, as quasi-invariants, one obtains an equation
describing the guiding centersfor c,(t). Averaging over
time, one uses the equalities

T -5 ®©

10O 0
lim=exp5 (E,— E,)Odt = 3y,
T-([ g 0

Y R

= 6mn6kI + 6mI 6nk - 6mk6kn6nl .

The latter assume that the spectrum E,, is nondegener-
ate. Generaly, in the presence of the nonlinear termin
the Hamiltonian (15.2), this is true. But even if the
spectrum E,, were degenerate, one could avoid compli-

1. O 0
lim 1IexpD'—(Em + E,—E,—E)tOdt
t 0
0
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cations in the following way. One may add to the
Hamiltonian (15.2) aterm lifting the degeneracy and to
set this term to zero at the end of the calculations.

Note that normalizing the function (15.8) as
(¢, ) = 1, one gets

3 ChDCA()(bm dre ™ = 1.

Averaging this over time, according to the rule (15.10)
and invoking condition (15.9), gives

z lea(D)]? = 1.

From here a useful relation follows;

(15.11)

e, = 1- > lem(D)]%.
m(#n)
Substituting the form (15.8) into Eg. (15.1) and

accomplishing the described time-averaging procedure
results in the equation

dc .

d_tn = z Ol | Gl €
m(zn) (15.12)

_ Iéén()BCj eiAmt _ Iéénj B* Coe—iAcot,

in which the amplitude

anmsA%j|¢n(r)|2(2|¢m(r)|2—|¢n(r)|2)dr (15.13)

is due to the nonlinear term in the Hamiltonian (15.2),
while the transition amplitude

B=F[08 (VIS (),
V(r) = Va(r) =iVa(r),

isrelated to the resonant modulating field (15.3). In the
process of the time averaging (15.10), the function
exp(iAwt) is also treated as slow because of the qua-
siresonance condition (15.7).

Equation (15.12) shows that the resonant field
induces transitions only between the ground-state and a
chosen j-level. At first glance, the nonlinear term, being
nonresonant, could induce transitions between al levels,
changing the corresponding fractional populations

Nn(t) = [Cn(1)]. (15.15)

However, from Eq. (15.12) it follows that for al levels
m# 0, j, except the two sel ected resonant level s, one has

(15.14)

d _ )
a—tnm(t) =0 (mz0,j).
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This, with theinitial condition n,(0) =0, yields
n,(t) =0 (Mm=z0,j).

Similarly, ¢ (t) = 0 for al m # 0, j. Therefore,
Eq. (15.12) isequivalent to the system of two equations

dc,

_ . i i Awt
i —|a0jnjco—§[3cje ,
" i (15.16)
j . —i Awt.
d_tJ = —idjonoC; —5B* coe ©

The initial conditions to these equations, according to
Eq. (15.4), are

c(0) = 1, ¢(0) = 0. (15.17)

The equations for the fractional populations (15.15)
immediately follow from Egs. (15.16) giving

%’ = Im(Be*“cic)),

q (15.18)
n. _ % —DO %

d_t] = Im(B*e "¢ ¢y),

with the corresponding initial conditions
n(0) = 1, ny(0) =0,

resulting from the conditions (15.17). The normaliza-
tion (15.11) for the fractional populations reduces to
the equation

no(t) +n;(t) = 1. (15.19)
Inwhat follows, for the simplicity of notation, we write
a=ay, (15.20)

and set an = Gjo.

Notethat in deriving Egs. (15.16), the orthogonality
of the coherent modes ¢,(r) and ¢(r), for m# n, has
not been assumed. What is used is the condition (15.9)
permitting one to invoke the averaging technique [399].
In addition, employing for these modes the sol utions of
Chapter 10, one can check that |(d,,, ¢,)| are less or of
order 0.1 if m # n. Hence the coherent modes can be
treated as approximately orthogonal since |(b,,, ¢,)] << 1
form#n.

The solutions to Egs. (15.16) and (15.18) can be
obtained analytically, provided the inequality

(15.21)

‘E<1
a

holdstrue. In that case, one can again resort to the aver-
aging technique [399], being based on the fact that the
functions c(t) and ¢(t) can be classified as fast, com-
pared to the slow functions ny(t) and n(t). With the
slow functions treated as quasi-invariants, Egs. (15.16)
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are linear equations with respect to cy(t) and ¢(t),
which gives

Qt  .a(np—n))-Aw . Ot
= —_— et — —_
Co [cos > i 0 sin 2}

X exp%—'é(or —Am)u%, (15.22)
0 0

c = —|B—*S|n—exp[1—2(a +Aw)uj

where the collective frequency Q, defined by the equal-
ity
Q°=[a(n—n;) -Aw]” + B’ (15.23)

is introduced. Comparing our case with the resonant
excitation of atomsin optics[296], we seethat |3 |plays

the role of the Rabi frequency, while J/|B|* + (Aw)? is
what is called the effective Rabi frequency. The quan-
tity Q, defined in Eq. (15.23), differsfrom the effective
Rabi frequency by the presence of the term containing
the interaction amplitude a. Because of this, in our
case, Q could be called the collective Rabi frequency;,
although it is not a parameter but a function depending
on time through the fractional populations ny(t) and
n;(t). For the latter, we get

2
np=1- |B| sinZQt n, = |—Fil—sinzg—t

o7 2 M2 5> (15.24)

If at some finite time t,, the modulation field (15.3)
is switched off, then, as follows from Egs. (15.18), the
fractional populations stand constant, with the values
No(to) and n;(to). Then, we have a mixture of two topo-
logical modes. This mixture will, of course, not exist
for ever, but during the lifetime of the corresponding
modes limited by atomic collisions. For instance, the
loss rates caused by binary depolarizing collisions can
be estimated as

Yo = A00N2n§I|¢o(r)|4dr
+)‘OiNznonij-lq)O(r)|2|¢j(r)|2dr1
Y = )\”Nznsz'|¢j(r)|4dr
+ A oN"nyno 16, (1)) 0o(r) e

where A;; are the related loss-rate coefficients and n, =
No(to) and n; =y (ty).
A modulating field (15.3) that is not monochromatic

but characterized by a frequency distribution p(w) that
is centered at wy will cause heating of the system dueto

(15.25)

COURTEILLE et al.

nonresonant transitions [400]. The corresponding heat-
ing rate can be expressed as the sum

IMheat = an |Br10|2p(wn0)’
n(#j)
in which

Bro= 7 [0F (DV(Do(r)er.

If the density of frequencies p(w) is sharply centered,
say as p(w) = O(w — W), then the heating rate is close
to zero.

15.2. Critical Dynamic Effects

The solution (15.22) to the evol ution equations (15.16)
has been obtained by using the averaging technique
[399], which requires the inequality (15.21). Wanting
to analyze the behavior of solutions to Egs. (15.16)
under an arbitrary relation between a and 3, we haveto
solve these equations numerically. This behavior turned
out to be surprisingly rich exhibiting unexpected criti-
cal effects[401].

For the numerical analysis of Egs. (15.1), it is con-
venient to introduce the dimensionless parameters

=Bl 65%‘*’ (15.26)
and to perform a scaling, measuring time in units of
o~L. To return back to dimensional time, one has to
make the substitution

t

t—» —. (15.27)
We solve [401] the system of Egs. (15.16) for different
values of the parameters (15.26), keeping in mind that
the dimensionless detuning is small,

<1 (15.28)

Varying the parameters (15.26), wefind [401] that there
exists abifurcation line, described by the relation

b+5=0.5, (15.29)

at which the qualitative behavior of solutions changes
abruptly.

To illustrate the drastic change in the behavior of
solutions, when crossing the bifurcation line (15.29),
let us first fix b = 0.4999 and vary the detuning o.
Figure 36 presents the fractional populations ny(t) and
n;(t), defined asin Eq. (15.15), time being measured in
unitsof aL. In Fig. 36a, the detuning iszero, 6 =0, and
the behavior of the fractional populations approxi-
mately follows the law (15.24). Slightly changing the
detuning to & = 0.0001 essentialy transforms the
behavior to that in Fig. 36b, where the top of n(t) and
the bottom of ny(t) become flat, touching each other,
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Fig. 36. The fractional populations ng(t) (dashed line) and n;(t) (solid line) as functions of dimensionless time, measured in units
of oL The transition amplitude is fixed, b = 0.4999, and the detuning is varied: (a) 3 = 0; (b) & = 0.0001; (c) & = 0.0001001;

(d) & = 0.00011.

while the oscillation period is approximately doubled.
Shifting the detuning by atiny portion to 4 = 0.0001001
results in Fig. 36¢, where the period is again doubled,
and there appear the upward cusps of ny(t) and the
downward cusps of ny(t). Increasing alittle the detun-
ing to & = 0.00011 squeezes the oscillation period
twice, asis shown in Fig. 36d. Similar changes happen
when crossing the bifurcation line under a fixed detun-
ing and a varied transition amplitude, as illustrated in
Fig. 37.

The unusual behavior of the fractional populations
is due to the nonlinearity of the evolution equations
(15.16). It isknown that systems of nonlinear differen-
tial equations can possess qualitatively different solu-
tions for parameters differing by infinitesimally small
values. The transfer from one type of solutions to
another qualitatively different typeistermed in the the-
ory of dynamical systems bifurcation [402]. At abifur-
cation point, dynamical system is structurally unstable.
Bifurcations in dynamical systems are somewhat anal-
ogous to phase transitions and critical phenomena in
equilibrium statistical systems [403]. To elucidate this
analogy for the present case, we have to consider the
time-averaged properties of the system, which can be
done asfollows. First, it is necessary to define an effec-
tive Hamiltonian generating the evolution equations

LASER PHYSICS  Vol. 11

No. 6 2001

(15.16). This can be done by noticing that these equa-
tions can be presented in the Hamiltonian form

dcy _ OHg .dc; _ OHg

i oat i acj*’ (15.30)
with the effective Hamiltonian

Her = angn; + Re(Be*“'cjc)). (15.31)

Substituting here the approximate solutions (15.22)
yields

Hegr = angn; —n;[a(n,—n;) —Aw].
The latter, with the normalization (15.20), gives

Hgr = an’ +n,Aw. (15.32)
Averaging the fractional populations (15.24) over the
explicit time and using this averaged quantity in the
collective frequency (15.23), one hasthe averaged pop-
ulation

_1BP

n; 1
20°

J (15.33)
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Fig. 37. The time dependence of the fractional populations ng(t) (dashed line) and n;(t) (solid line) under the fixed detuning & = 0
and varied transition amplitude: (a) b = 0.45; (b) b =0.4999; (¢) b= 0.5; (d) b=0.5001; (¢) b=0.6; (f) b=1.

in which the averaged collective frequency is given by
the equality

Q° = [a(1-2n,)—Aw]’ +[B%, (15.34)

The effective average energy can be defined by taking
the effective Hamiltonian (15.32) with n; replaced by
the averaged population (15.33), which gives

Est = 0N} +NAW. (15.35)

To study akind of thermodynamics of the so defined
effective system, it is possible to introduce the follow-

ing characteristics. The pumping capacity
_ 9B
- olp|

describes the capacity of the system to store the energy
pumped into it by the modulating field. The order

parameter

Co (15.36)

N=ny—n, = 1-2n, (15.37)

characterizes the level of excitation, being n = 1 for a
system in the ground state and n = —1 for a completely
excited system. The detuning susceptibility

X5 = |20 (15.38)

0%
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defines how avariation of detuning influencesthe order
parameter.

It is convenient to pass again to the dimensionless
guantities (15.26) and to introduce the dimensionless
average collective frequency

e
€= 5 (15.39)
Then Eq. (15.34) takes the form
e (e?—b%) = (e2-b*—¢€%3)". (15.40)
The average energy (15.35) becomes
_ ab’pb’
Ey = St % (15.41)
And the order parameter (15.37) is
b2
n = 1—;5. (15.42)

Taking into account the smallness of the detuning (15.28),
one can simplify the above expressions.

Looking for a positive solution of Eq. (15.40), one
can notice that there isthe critical value

1
bc = é
at which the average collective frequency (15.39) has a
jump, so that

-3, (15.43)

£ = S[1-25+.J(1-28)2—4b7""  (15.44)
J2
for0<b<hb,, but
e=b (b>b,). (15.45)

The frequency (15.44) changes from
€e=1-26 (b=0)
to the critical frequency

_ 1 _
€ = /2 5 (b=b,),
with the jump at b = b, being
1-./2 10
g(b,+0)—g(b,—0) = ——¥5_ - =53,
(bo+0)—g(b,=0) = == —H v

A sudden decrease in the frequency implies an abrupt
increase in the oscillation period. The order parameter
(15.42) variesfromn =1 at b = 0 to the critical value

1 _
Ne z+6 (b_bc)l
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becoming zero for b > b.. The average energy (15.41),
above b, does not depend on the value of b,

Ea = 35+8] (b>by).

Thus, the pumping capacity (15.36), order parameter
(15.37), and detuning susceptibility (15.38) all are zero
above b,

Cs=0, n=0 Xxs=0 (b>b;). (15.46)

The behavior of these characteristics in the asymptotic
vicinity of the critical line (15.43), below the critical
pumping b, is as follows. With the notation

b.—b
be

the pumping capacity is

= (b<hb,),

«/5—1/2 1 3ﬁ 2
Cp= 8T i 321' , (15.47)

the order parameter becomes

n = %+5+%2(1—25)r”2, (15.48)
and the detuning susceptibility takes the form
1 _w M2 12
=—=1 "—-1+—1". 15.49

This shows that the pumping capacity and detuning
susceptibility diverge as T — 0. Hence, Eq. (15.43)
really defines a critical line where critical phenomena
occur. Thecritical indicesfor al characteristicsare 1/2,
satisfying the scaling relation

indCB +2indx +indxs = 2, (15.50)

known for critica phenomena [403]; here ind is the
abbreviation for index. The critical line (15.43) coin-
cides with the bifurcation line (15.29).

15.3. Spatio-Temporal Evolution of Density

In the two-level picture of Section 15.1 the coherent
field (15.8) is

O(r.1) = co(o(r) P EH
(15.51)

+cj(t)¢j(r)expg—%5jtg.

To study the spatio-temporal properties of an atomic
cloud, it is convenient to average the density of atoms

N|d(r, t)]* over the period 21wy of fast oscillations,
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treating ¢, and ¢; as slow functions of time. The result
is the envelope density

p(r,t) = Polr, ) +p;(r, i),
inwhich
po(r) = Nn, ()]0, (r))>, p=0,j.

The density (15.52) is normalized to the number of
atoms,

(15.52)

Ip(r,t)dr = N.

For a cylindrical trap, one may pass to the dimen-
sionless notation of Section 9.4 and define the dimen-
sionless densities

|3
p(r, 6,2, =p(r, 1),
(15.53)

3

I
pulr, 9,2,) = £54(r. D)

depending on the dimensionless space variables (9.24).
The introduced dimensionless density is normalized as

00 27T+ 00
”J’p(r,qn,z,t)rdrdq;dz =1
O 0—00
and is given by the sum
p(r,9,z,t) = po(r, §,z,t) +p(r, ¢, 21), (1554)
in which

Po(r, §,2,1) = ng(t)|Wo(r, ¢, Z)|2,
p(r, 6,2, 1) =n,(1)|w;(r, §, 2)|%,

with ), and (; being the dimensionless coherent
modes.

In the optimized approximation of Chapter 10, the
ground state mode can be written as

(15.55)

DJZ VD]M

01, » >\
Wooo(r, $,2) = exp5(ur”+vz)o,
000 DT[3D g 2

0 (15.56)

where the control functions u = Uy, and v = vy, inthe
strong-coupling limit, are

_ (an) 1/5

! (2rf) V2
T (vg)®

000 ~ (Vg)ZS '
The ground-state energy is
2/5
Ewo = 29 = 0547538(vg)*,
4(21c)

where the indicesmeann =0, m=0, k=0, and again
the strong-coupling condition vg > 1 is assumed.

(15.57)

COURTEILLE et al.

Theradial dipole mode, with the quantum numbers
n=1 m=k=0,ispresented by

Wio(T, 0, 2)

v 0 (15.58)

2 4

VD (urz—l)ex L g
PO (ur + vz,

Hre'H 02 5

where u = Uygg and v = vy are

_ (6m™®®

G _ (61T)315V2
100 (Vg)2/5’ 100

3(vg)®®

The corresponding energy writes

1/5
Eyp = 2536‘3 (vg)?® = 0.643948(vg)%°. (15.59)

D;a]
Therefore, the transition frequency is

W00 = Egoo— Egge = 0.096410(vg)?°.  (15.60)
Here and in what follows the strong-coupling limit
vg > 1lisagain supposed.

The vortex mode, with the quantum numbersn = 0,
m=1, k=0, isof theform

Woo(r, ¢, 2)

V4 (15.61)

i O [l
=y re¢exp[1—1(ur2+ vz,
- 02 0

where u = Uy, V = Vg ae

_ 202" N €119 W
00 = — 5 ——
(vo)

The transition frequency from the ground to the vortex
dstateis

3.424
Wo10 = Egio—Eoo = ——5 (15.62)

(vg)*
The axia dipole mode, with the quantum numbers
n=0,m=0, k=1reads

Woar (1, $,2)
_AvH" 01, 5, L0 (15.63)
= zexpr=(ur +vz)o,
S H 2 0
Where u = Uy, V = Vg, are
oy = 2(1/3)*° = 6(n/3)3’5v2_
(vg)*” (vg)™

Therelated energy is

3/5
Eoy = ga% (vg)?® = 0.607943(vg)?°. (15.64)
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Fig. 38. Excitation of the radia dipole mode with the quantum numbersn = 1, m= 0, k = 0 with the parameters g = 100, v = 10,
b = 0.4, 5 = 0.01. The ground-state density pg (solid line) and the density p,qg (dashed line) as functions of the radial variabler at

the point z= 0 for different times measured in unitsof a™%: (&) t=0; (b) t = 2; (c) t = 4.
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Fig. 39. Excitation of the vortex mode with n =0, m= 1, k = 0 with the same parameters as in Fig. 38. The ground-state density pq
(solid line) and the density pg;g (dashed lin€) as functions of the radial variabler at the point z= 0 for different times: (&) t = 2;

(b) t=4.

Hence, for the transition frequency, one has
W1 = Egos — Eggp = 0.060405(vg)?°.  (15.65)

The spatio-temporal behavior of the densities
(15.55) for low-lying modesisillustrated in Figs. 38 to
40. The corresponding wave functions are taken from
Egs. (15.56), (15.58), (15.61), and (15.63). The frac-
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tional populations (15.15) are calculated by solving
Egs. (15.16).

15.4. Resonance Formation of \Vortices

To form a vortex, the resonance field (15.3) must
depend on the radial angle, so that the corresponding
transition amplitude (15.12) be nonzero. For the latter,
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employing the dimensionless cylindrical variables, one
has

2n

_ 100 +o0
Bomk = f—i{fdr{%idzwo(f, ,2) (15.66)

XV(r, ¢! Z)qJnmk(r! q)’ Z)'

In the case of a pure vortex, withn=k=0and m# 0,
using for the ground state the function (15.56) and for
the vortex mode

Im +1 1/2|j/ 1/4 m
LIJOmO(r’q)yZ) = BTTMIE D—T—[-HH rm

- - (15.67)
X XD L3 (Unt™ + V) + imby],
] [

with the control functions u,, = Uy and Vv, = Vg, ONE
finds

m+1 1/2 14
1 RUotm 7 (VoVm)
BOmO -

U it Oy sy )2
R Vot Vi) (15.68)

x [rar [V, ¢)r‘m‘exp%—:—2L(u0+ U2+ imer:
) 0 0

the resonant field being assumed to depend only on r
and ¢. Taking thisfield in the form

V(r, §) = %hwrrpexp(—i mé), (15.69)

which corresponds to the rotating potential (15.3) with
V,(r) ~ cosm'¢ and V,(r) ~ sinm'¢, one obtains

_ 5 Ko p+Imp
BOmO - 6mm’ p' r %‘ + 2 D
(15.70)

m+1 2
y O ugUn U oV,
EnmllupﬂmH Ugy2z0

<

where

For some particular cases, whenm =1andp=0, 1, 2,
we get

BOmO = 6mlo'964|'«"-)r (p = O),
Bomo = 3m10.588kw,(vg)™® (p=1),
Bomo = 8mi0.598kw,(vg)®®  (p = 2).
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Expression (15.70) shows that the modulating
field (15.69) will excite vortices with the winding num-
bersm.

15.5. Problems in Resonance Excitation

In deriving the evolution equations (15.16) for an
effectivetwo-level system, an essential assumption was
made that the coefficients ¢, are slow functions of time,
so that the inequality (15.9) holds true. The transition
amplitude (15.20) of the resonant field can always be
taken so that B < a. Then Egs. (15.15) show that the
time variation dc,/dt is of order a. Hence, it should be
that |a| < E;. From the definition (15.13) it follows that

21 +00

— 2
a = Zgwr{rdr{dq)ldzwo(r,q),z)| (1571)

x (2|;(r, ¢, 2)|* = [Wo(r, 0, 2)|%),

where the index j implies the triplet of quantum num-
bersn, m, k. Calculations show that for gv > 1 thevalue
of a can become of order E;. This means that the two-
level picture can be a rather rough approximation for
gv > 1, and one would expect the ground state to be
coupled to more than one excited mode. Such a situa-
tion is analogous to the effect of power broadening in
optics [296]. In order for the two-level picture to be a
good approximation, one should choose gv not too
large. The atom—atom coupling parameter g, defined in
Eq. (9.27), isproportional to the number of atoms N. If
the number of atoms in the coherent state is large,
N > 1, then it may be that g > 1. Hence, to reduce the
value of the product gv, one hasto take small v, making
gv ~ 1. Small v implies that the trap should have the
shape of along cylinder.

In order to check directly that the two-level picture
is a reasonable first approximation, it is necessary to
solve numerically the time-dependent equation (15.1).
The latter, in the dimensionless units of Section 9.4,
acquires the form

i _ AV, (15.72)

where Y = Ji(r, t); time is measured in units of wr_l;
r ={r, ¢, Z}, with the dimensionless cylindrical vari-
ablesr [0, ), ¢ O [0, 21, and z O (—o0, +). The
Hamiltonian reads

=_1

A 2D2+%(r2+v222) rolwlk  (15.73)
where
-9 ,10, 10 &
or? Tor (%p¢® 97
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The resonant field Vies, measured in units of %,
can be taken in one of the following forms, depending
on the type of a topologica mode one would wish to
excite: Thus, the modulating field

Vies = KICOSOOL (15.74)
is needed for exciting the radial dipole mode. The field

Vies = KFrlp[cos(mq))cosmH sin(mé)sinwt] ,(15.75)

withp=0, 1, 2, ..., is sufficient for exciting vortices
with the winding number m. And the resonance field

(15.76)

will excite the axia dipole mode. Choosing the appro-
priate modulating field, one can create the rel ated topo-
logical mode.

As initial condition to Eq. (15.72), one has to take
the ground-state mode that can be approximately pre-
sented as

Vies = KZCOSWL

1/4

2 01 0
W(r,t) = %—J]—T?B expg—é(ur2+ vzz)g. (15.77)

Here, the control functions u and v are defined by
Egs. (10.52), which, for the ground-state case, reduce
to

10, s v, s
—-—+—V=0, ___+__._:O,
%’ UZD V %’ VZD V,\/V
with the variable s = 2vg/(2m)¥2.
The resonance effect in the two-level picture can be
noticed as follows. One may observe the spatio-tempo-
ral behavior of the dimensionless density

n(r, §,zt) = |w(r, ¢, 1) (15.78)

studying the radial and axial cross sections, n(r, 0, 0, t)
and n(0, O, z t). The appearance of excited topological
modes, with the spatial shape qualitatively different from
the ground-state mode (15.77), should be noticed in the
corresponding cross sections of the density (15.78).

The formation of a vortex can also be noticed by
studying the angular orbital momentum

r—
LZ——IIl]J aq)qur.

If thereare no vortices, L, = 0, whilewhen there appears
a vortex with the winding number m, then L, = m.
Because of the oscillatory character of the problem, the
orbital momentum will also oscillate since L, = L,(t) is
a function of time. One may consider the temporal
behavior of L,(t). If in some moments of time the latter
reaches an integer value m, this would mean that there
occurs the formation of avortex with the winding num-
ber m.

(15.79)
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The problem of numerical solution can be simplified
in three particular cases. The first case is when one is
interested in exciting the radial dipole mode in along
cylindrical trap, for which v < 1. Then one can limit
oneself to the consideration of the wave function
behavior at the center z= 0, assuming that at this center,
the wave function practically does not depend on z and
¢. This permits one to neglect the derivatives over zand
¢ in Eq. (15.72), which yields

LI
i (Hr + Vi) U,

where g = (r, t) = (r, 0, 0, t) and the radia nonlinear
Hamiltonian is

2

2Lpy2

To excite the radia dipole mode, one has to use the
modulating field (15.74).

Another case of simplifying the computational problem
iswhen oneinvestigates the excitation of avortex mode
inalong cylindrical trap, so that againv < 1. Then con-
sidering, as previoudly, the problem at the center z= 0,
one may assume that the wave function slowly changes.
The latter allows one to omit the derivative over z,
which smplifies Eg. (15.72) to

100,1° 2
rord” 2" oyl

with the function Y = (r, ¢, t) = Y(r, ¢, 0, t) and the
transverse Hamiltonian

Ho = —%Dzu+%f2+g|¢|2,
in which
2 2
Dé = a +1i+ 16_

6_r2 ror r_zaq)z'
For the excitation of the vortex mode, one should take
the resonant field (15.75).

Finally, one may consider the excitation of the axial
dipole modein adisk-shaped trap, withv > 1. Itisthen
admissible to analyze the situation at the axisr = 0,
assuming the slow dependence of the wave function on
r and ¢. This changes Eq. (15.72) to

|%L—1|:J = (HZ+\7TGS)LIJ1
with =(z t) =Y(0, 0, z, t) and the axial Hamiltonian
A, = -

The axial dipole mode isto be excited by the modulat-
ing resonant field (15.76).
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In all these simplified cases, as well as for the gen-
eral equation (15.72), one has to set boundary condi-
tions in addition to the considered initial conditions.
These boundary conditions are rather obvious, and for
the general wave function Y(r, ¢, z, t) they write

limy(r,¢,z,t) =0, limuy(r,¢,zt) =0,

Q(r, o +2mzt) = Y(r, ¢,z1t).

Numerical investigation of the equations discussed
inthissection isyet in process. However, the validity of
the two-level picture has been proved by direct numer-
ical calculationsfor severa similar problems[140, 379,
380, 398, 404], where the nonlinear Rabi-type oscilla-
tions between the ground-state and an excited mode
have been clearly observed.

Another interesting problem would be to study the
possibility and peculiarity of the resonance formation
of coherent topological modes in Bose-Einstein con-
densates with attractive interactions. Such condensates
exhibit oscillatory collective collapse[111]. Being sub-
ject to a resonant modulating field, the condensate
should also show the nonlinear Rabi oscillations. These
two kinds of oscillations should interfere resulting in a
rather intricate behavior. It could, probably, be possible
to regulate the oscillating collapse by means of a reso-
nant field.

(15.80)

CHAPTER 16.
COHERENCE AND ATOM LASERS

The possibility of realizing Bose-Einstein conden-
sation in trapped dilute gases demonstrates, that a mac-
roscopic number of bosons can be produced in asingle
guantum state of trapped atoms. The occupation of a
single quantum state by alarge number of bosonsisthe
matter-wave anal og of the storage of photonsinasingle
mode of alaser cavity. A device that could emit coher-
ent beams of Bose atoms, similarly to the emission of
photon rays by light lasers, can be called atom laser
[196-203]. Briefly speaking, an atom laser can be
defined as a device emitting highly-directional beams
of coherent atoms. Therefore, there are two principal
guestions related to the realization of atom lasers:
whether the stored bosons are prepared in a coherent
state and how to form awell-collimated beam of atoms
in any desired direction.

16.1. Interference and Josephson Effect

Asshown in Chapter 8, Bose—Einstein condensation
in dilute gases of trapped atoms can be understood as
the macroscopic occupation of the ground-state coher-
ent mode. An important consequence of coherence is
the occurrence of interference phenomena. These have
been observed in a nice experiment [195], which con-
firms that Bose-Einstein condensed trapped atoms are
in acoherent state. In this experiment, alaser beam was
used to cut a cigar-shaped atomic cloud into two spa-
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tially separated parts. After switching off the confining
potential and the laser, the two independent atomic
clouds fall down because of gravity, expand because of
atomic repulsion, and eventually overlap. Clean inter-
ference patterns have been observed in the overlapping
region.

The appearance of interference patterns can be eas-
ily explained as follows. Imagine that a cloud of atoms
is separated into two parts whose locations are centered
a |, and I,. Being released from the trap, these parts
move with the corresponding velocities V; and V..
Then the field operator can be presented as

ik, OF ik,

P(r,t) = Py(r,t)e = +yy(r,)e =, (16.1)
where y; and ), are the field operators of the separated
immovable parts, and 7k = myV;.

The interference pattern can be described by the
function

I(r,t) =p(r, t) —pa(r, t) —pa(r, 1), (16.2)
in which
— At
p(r.t)= EHJT(r,t)llJ(r, ! (163)
p;(r,t) = W, (r, t)y;(r, t)d
From Egs. (16.1) and (16.2) it follows that
I(r,t) = 2Repy(r, e ", (16.4)
whereky, =k; —k, and
Poo(r, 1) = T (r, DWy(r, )0 (16.5)

The initial separation of the cloud parts is assumed to
be much larger than the mean interatomic distance,

(16.6)

If atoms are not in a coherent state, so that the coher-
ence length issmall, r ., < &, then the correlation func-
tion (16.5) is practically zero, together with the inter-
ference function (16.4). Hence, no interference can be
observed. When there exists local coherence, so that
ronh = a, then the correlation function (16.5) does not
decay so fast, and the observation of interference
becomes possible. If amost the whole system was ini-
tially in a coherent state, so that r,, ~ L > |,,, then the
correlation function (16.5) takes the form
Tt

Po(r,t) = po(r)e —, (16.7)
inwhich 7wy, = E; — E,, with E; being the energy of the
coherent mode related to aj-part, and

P1o(r) = NOT (r)(r), (16.8)

where ¢; is a coherent mode located at |;. If atoms are
in the ground state, then the modes ¢, are real. Conse-

|12>a., |125|I1_|2|-
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quently, p1,(r) is aso real. Therefore, the interference
function (16.4) becomes

I(r,t) = 2py,(r)cos(ky, [ —wyot), (16.9)
and one can observe clean interference patterns. In gen-
eral, these patterns will display collapses and revivals
with the period

_2n

At = =, 16.10
™ (16.10)

But if the energies of both separated parts are the same,
E, = E,, then wy, = 0, and the interference patternis sta-
tionary, with the interference function

I(r,t) = 2py(r)cos(k,, [F). (16.11)

The spatia interference can be characterized by the
interference fringe spacing. Considering, say the
x direction, one may define the fringe period Ax =
2117K,,. With the evident renotation

|
ik, = MeVy,, Vi, = %2,

one abtains the fringe period

fit
Myl 15’

Ax = 21t (16.12)

in agreement with the experiment [195] and with the
discussion in [405].

It isworth emphasizing that coherence is the neces-
sary and sufficient condition for interference. And this
requires no breaking of gauge symmetry, so that one
can set W= 0, as is elucidated in Chapter 8. The
assumption of broken gauge symmetry is only a suffi-
cient condition for interpreting interference, but it isnot
a necessary condition. Therefore it is not correct to
state, as many do, that the observation of interference
proves the existence of broken gauge symmetry. Such a
statement is wrong, since one presupposes what is
alleged to be proved.

Another manifestation of coherencein trapped con-
densates could be the possible occurrence of Joseph-
son-type effects, in analogy with the known properties
of Josephson junctions in superconductors and super-
fluids. To work out the physical idea, we consider again
two separated condensates confined in a double-well
trap which erects abarrier between them. Then thefield
operator can be written as

l-I-J(r’t) = LIJl(rit)+l-|J2(r1t)! (1613)

similarly to Eq. (16.1), but with k; = O, if the condensate
on average does not moves. The physical meaning of
the Josephson effect isthe manifestation of interference
in the atomic current, equivalently to the manifestation
of interference in the atomic density, which isdescribed
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by the interference density function (16.2). Thus, the
interference current is defined as

J(r,t) = O(r,)0-0,(r,)0-0,(r, )0 (16.14)
where

. _ i
i 0 =-5 (W Vb= (e,

o (16.15)
(0 == [ VU = (V)W

With the split operator (16.13), the current (16.14) is
J(r,t) = 2Re[ ,(r, ) (16.16)
where

jlz(r,t)s—é'—r%[wivwz—(vwbwz]. (16.17)

The following argumentation is the same as when
considering the density interference. One assumes that
the potential wells, separating the condensate in two
parts, arelocated sufficiently far from each other, in the
sense of theinequality (16.6). Then, if the system is not
coherent, the corrélation function [,,0is negligible,
and there is no interference current. However, if the
atomic system is in a coherent state, then the coherent
average gives

Oou(r, 0, = —idp(r)e ™,

with Aw,, = E; — E, and

(16.18)

Jio(r) = %[M(UV%U) = ,(r)Vo1 (r)]. (16.19)

For the ground state, ¢; arerea, soisJy,(r). Therefore,
the interference current (16.16) becomes

J(r,t) = 2J5(r)sinwy.t, (16.20)

which is the typical Josephson form. This current
depends on timeonly if w;, # 0, so that the energies E;
and E, should be different.

Note that for a coherent state, the average [j; [ does
not depend on time, and for the ground state, when ¢,
arereal, [J; [} = 0. But the interference current has been
defined as in Eq. (16.14) for generality and for closer
analogy with the interference density (16.2).

16.2. Conditions on Atom Laser

Defining an atom laser as a device emitting highly-
directional beams of coherent atoms, one aways
assumes [202] that the very first condition on alaser is
that its output is a well-collimated beam that can be
pointed in an arbitrary direction:

(1) Highly-directional beam. This condition
allows one to distinguish a longitudinal direction of
propagation and two transverse directions of diffrac-
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tion. Good collimation implies the smallness of the
aspect ratio

r(t)
z(1)
inwhich r(t) isthe average transverse radius of a beam

and z(t), its length. The directionality also supposes
that it can be chosen arbitrarily in space.

Characterizing the coherence of alaser, it is useful to
dightly generalize the notionsintroduced in Section 8.5.
Coherence is intimately related to strong interatomic
correlations. The information about the latter is hidden
in the correlation function

C(r,r,t)= ' (r, (', 0)0
- p(r, 0)p(r',0) -

where the density p(r, t) isthe same asin Eq. (16.3).
The coherence length can be defined as

()= lrlC(r, 0, t)|dr

<1, (16.21)

(16.22)

, (16.23)
IIC(r, 0,t)|dr
and the coherence time as
Teon(T) EJ’IC(r, 0, t)|dt. (16.24)
0

Asisseen, the coherencelengthis, generaly, afunction
of time, while the coherence time depends on the spa-
tial variable. One may distinguish spatial and temporal
coherence.

(2) Spatial coherence. This requires that for some
period of time,

reon(t) = a, (16.25)

where a isthe mean interatomic distance. It is not com-
pulsory that theinequality (16.25) bevalid for all times,
but it is sufficient that it holds true during the time of
beam emission. Thus, for apulsing laser, this should be
the time of emitting one beam.

(3) Temporal coherence. This is the condition on
the coherence time,

Ten(r) =y, (16.26)

wherey isaspectrum linewidth. Temporal coherenceis
related to the condition of monochromaticity,

Yy < W, (16.27)

with Aw being a characteristic atomic energy.

A simple model for an atom laser can be formul ated
as follows [203]. Assume that not all atoms of the sys-
tem are in a coherence state, but only N, of them, so
that the coherent field n isnormalized as

Neon = (N, N)- (16.28)

LASER PHYSICS Vol.11 No.6 2001
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A part of atoms, N, iS not coherent, for example
because of fluctuations [406] or because of depolariz-
ing collisions [363]. In order to take into account that
the number of atoms in a trap is not conserved, one
should add to the equation for the coherent field the
terms describing atom loss and gain. This can be done
by adding to the nonlinear Hamiltonian (8.17) the cor-
responding terms

i i
Hgain = éhy+Ninc1 H|0$ = _éﬁy—- (1629)

Then the evolution equation (8.16) for the coherent
field transformsto

_ (16.30)
+ A|r]|2ﬂ + Iiﬁ(y+Ninc _y—)r] .

From here, with the normalization (16.28), it is
straightforward to get the rate equation

d
a-t Nooh = (Y+Ninc _Y—) Ncoh-

(16.31)
The latter is to be complemented by the rate equation
for incoherent atoms, which can be taken in the form

d
d_tNinc = P_(y+Ninc+ r)Ninm

(16.32)
where P isapumping or generation rateand I isaloss
rate.

Analyzing the stationary solutions to the rate equa-
tions (16.31) and (16.32), one finds that two regimes
exist, depending on the value of the generation rate P as
compared to the critical threshold quantity

p.=Yor, (16.33)
Y+

For low generation rates, the stable stationary solutions

are

P
r
hence, there is no stationary generation of coherent
atoms. But as soon as the generation rate P exceeds the

threshold (16.33), the stable stationary solutions
become

o =0, N = (P<Py), (16.34)

P-P Yo

:oh = V. c' Ni’:\c = Ir

Then the steady-state number of atoms in the conden-

sate grows linearly with the pump rate P. This situation

reminds the lasing threshold for generation in photon
lasers.

The model outlined above has not addressed details
of the output coupling, ssmply assuming the existence

(P>P). (16.35)
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of aloss mechanism from the lasing mode. But output
coupling obviously constitutes a vital element of an
atom laser. The general idea of realizing output cou-
pling is to transfer atoms, via a radiofrequency or
microwave field, from a trapped state to an untrapped
state. Being transferred to a state that is not confined by
magnetic fields, the atoms would fly out in all direc-
tions, if gravity would not force them to fall down.

Mewes et al. [14] have experimentaly demon-
strated precisely such an output coupler for Bose-con-
densed sodium atoms. Using short resonant pulses of
radiofrequency radiation, an arbitrary percentage of the
atomic population could betransferred in acontrollable
manner to the output state. Atoms in the output state
simply fall down from the trap under the action of grav-
ity. Bloch et al. [16] have demonstrated a continuous
output coupler for magnetically trapped rubidium
atoms. Over a period of up to 100 ms, atoms could be
continuously extracted from condensate by a weak
radiofrequency field inducing spin flips between
trapped and untrapped states. |n the untrapped state, the
atoms leak out of the trap, experiencing the action of
gravity. Hagley et al. [17] extracted sodium atomsfrom
a trapped condensate using stimulated Raman transi-
tions between magnetic sublevels. In the latter experi-
ment [17], contrary to the previous ones [14, 16], opti-
cal Raman pulses drove transitions between trapped
and untrapped magnetic sublevels, giving the output-
coupled fraction of atoms a well-defined momentum
kick from the photon recoil. Because of this, atoms
exited the trap in a well-defined beam whose direction
could bevaried viathe details of the Raman lasers. This
technique produced adevice that could really be called
an atom laser, since the orientation of the laser beam
did not rely on gravity but could be selected [407].

16.3. Nonadiabatic Dynamics of Atoms

The motion of trapped atomsis usually described as
being governed by an effective confining potential.
Such apictureisequivalent to the adiabatic approxima-
tion that is applicable for describing the stationary
motion of atoms. But when atoms escape from a trap,
their motion is, certainly, not stationary and hence, in
genera, it is not necessarily adiabatic. The study of
nonadiabatic dynamics of atoms is not only useful
because this gives a more general picture of atomic
motion, but also because in this more general picture
some novel dynamical regimes could be found, sug-
gesting new mechanisms for creating highly-direc-
tional beams from atom lasers.

To derive general equations of atomic motion in a
trap, one should start not with an ad hoc introduced
effective confining potential but with the consideration
of the real forces in the trap. For this purpose, one can
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invoke a quantum-mechanical description based on the
Hamiltonian

iy = ZD"' ~ 1S (B, ~myg [0+ 25 o, (16.30)
i#]
for asystem of N atoms, in which p, isan atomic mag-
netic moment, p; = —iAV isamomentum operator, S is
a spin operator, B; is the magnetic field formed by the
trap, g is the gravitational acceleration, and ®; is an
interaction potential. The evolution of this system is
given by the wave function Wy = Wy(ry, ry, -, My, 1)
satisfying the Schrédinger equation
0

|ﬁE[LIJN = |:|NLIJN.

Note that Wy =

variables. For an operator A from the algebra of
observables, the quantum-mechanical average is given
by the scalar product

(A= (W, AW,).

The temporal behavior of this average follows from the
Schrédinger equation giving

d a 0A
a—tDDD <0t>+ AN, A0

In particular cases, this yields the so-called Ehrenfest
equations, that isthe equations for the mean space vari-
able,

[Wy] isacolumn in the space of spin

(16.37)

d

50 Ep O (16.39)

and for the mean momentum of one atom,

a Bi a
dgttbimzu0<siD6—0>+uog“+f, (16.39)
or;
wherea =X, Yy, zand
N

f= —z v, o0 (16.40)
i(#)
For the mean spin, one gets
d H
5 B0= ﬁ" (S x B (16.41)
It is convenient to introduce the notation
r=r] S=054 B=BU (16.42)

To render the system of equations closed, one employs
the semiclassical approximation

5'B'0= B, <‘1Eﬁ> - 98

(16.43)
ar’l  or®
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Then Egs. (16.38) and (16.39) yield

2 a [of
dr _ Mog0B, g, L (16.44)
dt My or” my
and Eq. (16.41) resultsin
dsS _ Ho
i hS x B. (16.45)

The system of Egs. (16.44) and (16.45) isbasic for con-
sidering the dynamics of atoms in nonuniform mag-
netic fields [408].

The total magnetic field of the trap can be taken as
the sum

B = B, +B,, (16.46)
in which the first term is the quadrupole field
B, = Bi(xe +ye, +Aze,), (16.47)

typical of magnetic traps, where A is an anisotropy
parameter. If the quadrupolefield isformed by one pair
of magnetic coils, thenonehasV - B, = 0, which gives
A =—2. However, in general, the anisotropy parameter
A can be varied. The second term

BZ = BZ(hxex+ hyey)a
where h, = h,(t) and

hi(t) +hi(t) = 1,

isatransversefield often employed in magnetic trapsto
stabilize the motion of atoms.

In what follows, it is convenient to switch to the
dimensionless space variabler ={X, y, Z} measured in
units of the characteristic length

(16.48)

=—, (16.49)

To return to the dimensional Cartesian vector, one has
to make the substitution

M — —,
Ro
Let us define the characteristic frequencies w,; and w,
by the equalities

HoBy UoBz
wl = MR, w, = 5 (16.50)
and introduce an effective frequency
= max —d—h(t)‘ , (16.,51)
t |dt
whereh ={h,, h O} . Also, the notation
=_9
= Gs= 16.52
¥§ = moRo R (16.52)
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will be used, with y being a collision rate.

Theforce (16.40) caused by pair interactions can be
modelled by arandom force dueto pair collisions. Then
€ in Eq. (16.52) istreated as arandom variable defined
by the stochastic averages

[T ( = 0,
E[Eu(t)zs(t‘)u]] = 2Du6a[36(t_tl)a
where D, isadiffusion rate.

In thisway, Eq. (16.44) transforms to the stochastic
differential equation

(16.53)

2
% = 0(S'e,+Se, +ASe,+ G) +yE, (16.54)
t
and Eq. (16.45) iswritten in the form
%f = wAS, (16.55)

where A = [Agg] is an antisymmetric matrix with the
elements

Aau = 0, A(xB = _ABCU
A12 = GZ, A23 = X+ hx! AS]_ = y+hy

If one invokes for Egs. (16.54) and (16.55) the adi-
abatic approximation, one finds an effective confining
potential being harmonic near the trap center. In fact,
the adiabatic approximation here assumes that the spin
adiabatically follows the magnetic field, which implies

that dS/dt = 0. The latter leads to the equality AS =0
or B x S=0. Conseguently, Sisaligned along B, so that
one can put S = (S(0) - B)B/B?. Substituting this in
Eq. (16.54), onefinds that the motion is approximately
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harmonic around the trap center. But recall that the adi-
abatic approximation has sense only for describing a
stationary regime, when atoms are permanently
trapped. And such an approximation is, in general,
invalid for treating nonstationary regimes, e.g., when
atoms fly out of the trap.

16.4. Scale Separation Approach

The evolution equations (16.54) and (16.55) can be
treated by employing the Scale Separation Approach
[409-412], which is a generalization of the averaging
method [399] to the system of stochastic equations. To
this end, it is necessary, first, to classify the functional
variables onto fast and slow. The latter can be done by
assuming the existence of the following small parame-
ters

0
W,
Then from Egs. (16.54) and (16.55) it followsthat r and
h can be treated as slow, while S as fast. This permits

one to solve Eq. (16.55) for the fast function, keeping
the slow functions r and h as quasi-invariants, that is,

the matrix A can also be kept as a quasi-invariant.

Y

W,

Wl <1, < 1.

W,

<1, (16.56)

For the matrix A, one can solve the eigenproblem
Abj = ajbj (J =1, 213)1
obtaining the eigenvalues

. [ 2 2 2
Qo = tijfAp+Ax+A;, a3=0

and the eigenvectors

b;

The latter possess the properties

b¥ = b, bY=b; bi=bi=0 bi=1
and they form an orthonormalized basis,
bfb; = &;, |b)°=1

With thematrix A treated as aquasi-invariant, the solu-
tion to EqQ. (16.55) reads

S(t) = Y Cib(exp{wa(ty,  (1657)
ji=1

where the coefficients
C; = S(0) [b;(0)
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- (ApAx—ajAz)e+ (ApAy +ajAx)e, + (Afz + ajz)ez
2 2,2 2 2 2 2\ 12 !
[(A—|a|) + (AL +]a] ) (Az + Ay)l

are defined by initia conditions.

The solution (16.57) isto be substituted in the right-
hand side of Eqg. (16.54) for the Slow variable, averag-
ing this right-hand side over time and over the stochas-
tic variable. In the process of the averaging, the func-
tions r and h should be distinguished between each
other due to the inequality

W,
()]

<1 (16.58)

that usually holds true. Then r is to be considered as
slow, compared to the fast function h. Thus, the double
averaging procedure for a function f(r, h, &, t) is
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defined as

Iinl%J’D]f(r, h(t), &, )T, (16.59)
0

where the dow variabler is kept fixed. Accomplishing
this procedure leads to the equation

2
dr _ W(F+0G),

t2

(16.60)

with the effective force

T

F = C,lim 1J'(b§ex +ble, + AbZe))dt,
Tl
0

(16.61)

in which
o - RIS+ (y+h)S+AZS
3 = I}
[(x+h0)%+ (y+hd)?+ 224"

(x+h)e +(y+h))e,+Aze,
[(x+h%)%+ (y+h)Z +A%A "
where hY = h,(0) and S = SX(0).

As an example of the transverse field (16.48) let us
take the rotating field, used in some traps [85], when

(16.62)

b; =

h, = coswt, h, = sinwt.

Then the effective force (16.61) becomes
[(1+X)S +yS +AzS5] (xe, + ye, + 2\"ze))
D[(L+2x+ X2+ + N2 AL+ X+ + N A
(16.63)
If initial conditions for the spin polarization are chosen
sothat § #0and S = S, = 0, then the force (16.63)

at |r| < 1 reduces to the harmonic form. For S < 0,
atomsare confined inthetrap, oscillating in an effective
harmonic potential. The presence of gravity does not
change much this mation, simply shifting the equilib-
rium position from the trap center. This picture
describes the standard motion of trapped atoms.

Suppose that, after atoms have been trapped, their
spin polarization is prepared in the initial state

S=g =0 §=5 (16.64)

This can be done, for instance, by means of a short
pulse of magnetic field. In quantum mechanics such a
processistermed sudden perturbation [413, 414]. If the
spin of trapped atoms was aligned along B,, then the
duration of amagnetic pulse, turning spinsto the polar-

ization (16.64), has to be shorter than oo;l, and its
amplitude larger than B,. The initial spin polarization

F=

COURTEILLE et al.

(16.64) is such that the spins are not aligned along the
magnetic field B. Therefore, Eq. (16.64) correspondsto
nonadiabatic initial conditions. Consequently, the fol-
lowing dynamics will also be nonadiabatic, and atoms
will not be necessarily confined, but will escape from
the trap. The finite size of the latter can be taken into
account by introducing the trap shape factor

=(r)=1-0(X +y'~R)o4 —ELE, (16.65)
where the trap is assumed to have the shape of a cylin-
der of radius R and length L, with @(-) being aunit step
function. Since the magnetic fields of the trap are sup-
posed to act on atoms only inside the trap, the
force (16.63), caused by these magnetic fidds, should be
nonzero only inside the trap. This is easy to take into
account by multiplying (16.63) by the shape factor (16.65).
Thus, the effective force of the trap magnetic fields,
under theinitial spin polarization (16.64), acquires the
form

F = %)\Suz(xex+ya/+2)\zzez), (16.66)
inwhich u=u(r),
u(r)E 2.2 259) 2.2 2 2\ 02"
[(L+2X+ X +y +AZ2)(1+ X +y +A"2)]
(16.67)

The evolution equation (16.60), with the effective force
(16.66), possesses the property of invariance under the
transformation

AS— A r— -1, G -G. (16.68)
Therefore, it is sufficient to consider the case of a fixed
sign of AS, say one can fix AS> 0.

For convenience, let us introduce the dimensionless
gravitational force

5=C - _ 9 (16.69)

AS  ASR,w>
and let us pass to the dimensionless time measured in

units of (,/ASw;)™. To return to the dimensional time,
one has to make the replacement

t — J/ASwt.
Then Eq. (16.60) yields
2 2
O = dunvs, S2oviies, sy
dt 2 dt

where the equation for the y-component is not written
down, being of the same form as the equation for the
X component.

Before analyzing Egs. (16.70), it is useful to give
estimates for the parameters typical of magnetic traps
[6, 85]. The characteristic frequency of atomic motion
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w, ~ 10%10° s, the frequency of spin motion
w, ~ 10’-108 s*. The frequency of the transverse rotat-
ing field w ~ 10°-10° s. The collision ratey ~ 10 s
From here

9&10

which shows that the inequalities (16.56) are valid, as
well astheinequality (16.58). The characteristic length
(16.49) is Ry ~ 0.1-0.5 cm. For S~ 1 and the gravita-
tional acceleration g ~ 10° cm/s?, by choosing appropri-
ate A and w,, one can always make the dimensionless
gravitational force (16.69) small, so that |§,| < 1. Thus,
for thetypical valuesA ~2,S~1, Ry~0.5cmand w, ~
10>-10° s, one has 9, ~ 10°2-101.

w i
10107,

W,

Y1078 —D 10
W,

16.5. Magnetic Semiconfinement of Atoms

The evolution equations (16.70) possess solutions
displaying an interesting regime of semiconfined
motion, when atoms are confined from one side of the
axis z but are not confined from another side [408,
415-419]. This semiconfinement is realized by means
of only magnetic fields, without involving additional
laser beams kicking atoms out and without mechanical
collimators. The existence of such a magnetic semicon-
finement can be demonstrated both analytically and
numerically.

First, let us demonstrate the occurrence of semicon-
finement analytically. Since |§,| <€ 1, the presence of
gravity does not drastically shift the center of the
atomic cloud from the trap center. So that for atomsin
the middle of the trap one can put |r| < 1. Then the
function (16.67) reducesto

ur) =1 (Ir] <1). (16.71)
Using this, the second of Egs. (16.70) can be trans-
formed to the form

iz _

T = (16.72)

N2 -2+ 252-2) + %,
where z, = z(0) and z, = z(0) areinitial conditions for

the location and velocity in the z-direction, respec-
tively. With the notation

2(t) = )%@(t _ty), (16.73)

inwhich ty is an integration constant defined by theini-
tial condition

6
0) = 2P (~ty) = 2,
z(0) )\z(to) Z
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the form (16.72) reduces to the Weierstrass egquation

APT _ 49

A (16.74)

-0,P —0;
with the invariants

= 1-)\25 =)‘_4%\2 5438 3,4
9=-3A 0 B=gA D 220~ 5207

The solution to Eq. (16.74) is called the elliptic Weier-
strass function [420]. To analyze possible regimes of
motion, it is useful to introduce the characteristic roots

e (i =1, 2, 3) defined by the equation
4e,3 -g,6—-0; = 0, (16.75)
whose solutions are
_ gzD «/é gzD
02 = 3+ 5= TIF 3
. (16.76)
€; ZB: gzD c’s 93"\/93 gz-
Then Eq. (16.74) can be written as
0 AP —e)(P-e)(P—e). (16.77)

Odtd ~

The properties of the characteristic roots (16.76)

depend on the sign of the determinant g;/27 — gs.
There are three different cases;

When gg < 27g§, the roots e, and e, are complex
conjugate, while e; is real. The right-hand side of
Eq. (16.77) can be presented as 4P — AP —e,). As
far asthe left-hand side of Eq. (16.77) is nonnegative, it
follows that % > e, or, according to the relation (16.73),
one gets z > 6e;/\2.

If gg = 27g§, then all three characteristic roots are
real and are
_ _ 1 s _ 13
el—ez——égs1 € =03 .
Again, admissible solutions are to be such that the
right-hand side of Eq. (16.77) be nonnegative. This

gives, asin the previous case, % = e;, hence z= 6e;/\°.
Thus, in both cases considered, one has z= z,,,,, with

Zin = %e3. (16.78)
A

That is, the motion along the z-axis is confined from

below by the minimal value (16.78), but it is not con-

fined from above. This means nothing but semiconfined
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Fig. 41. Phase portrait for the period of time 0 < t < 50 for atoms starting from the trap center xg = yg = zy = 0 with velocities X, ,

Yo % variedintheinterval [-0.1, 0.1]. The trap parameters are R= 10, L = 10, and A = 20. Note that the picture practically does
not change upon independently varying the trap radius and length between 10 and 100. The gravity parameters are &, = 0.01, 3, =0,

9, =—0.01. Shown are: (a) trajectories; (b) velocities.

motion. Such a type of motion is realized for gg <

2795, which yields the inequality

< X072 4 35,0, 3
2—4 ZO ZZO ZZE

Thelatter would always hold true if there were no grav-
ity or when the trap axis is directed along the gravita-
tional force, that iswhen &, = 0. However, if 8, <0, this
inequality isvalid not for all initial conditions, though
for the mgjority of them, since |§,| < 1.

For the case gg > 27g§ , which is possible only for
0, = 0, hence 9, < 0, the characteristic roots (16.76) are
real and can be written as

€, = —%J%%:os%iﬁ%sin%,

12

Ogs O
e; = /gzcosg, ¢ = arctan -2 — 1
3 3 (p7g: O

Therootsarearranged sothat e; <e,<0<e;. Thereare
two admissible kinds of motion. One kind corresponds
to z= z,;,, with the same minimal z asin Eq. (16.78),
which is again the semiconfined motion. And the other
type corresponds to a motion confined between e; and
e, sothat e, < z< e,. Thismeansthat in the whole phase
space of initial conditions, the fraction of atoms that
remain confined isof order e,—e;, whileal other atoms
are semiconfined.

To estimate the fraction of atoms that remain con-
fined, one can take into account that |d,| << 1, thence

0, < 1, which shows that g; = 0. From here ¢ = 102,
and the related characteristic roots are

& . o

el:_Tv e2 e31 2
Thisresultsin

g A 12

€e,—-€ = [—2 = —=I8]™",

2 2@

which for the typical values of the parameters consid-
ered above givese, —e, ~ 102-10L. Therefore the frac-
tion of atoms that remain confined isless than 10% and
can be made as small as 1%.

The dlliptic Weierstrass function, being the solution
of Eq. (16.74), divergesat t — t;, which resultsin the
divergence of the z-variable (16.73) according to the
law

_6
A2Jt—to|?

The characteristic time

z(1) (t—to).

_ . dp _NM oo

tyg = J.—A/;: %)O = -G—Zq] (1679)
poN AP —02P— 03

can serve as an estimate for the escape time, that isthe

time after which an atom, starting at the location z, at

t = 0, leaves the trap. The estimates for the typical trap

parameters give [408] an escape time of order 0.1 s.
The existence of semiconfinement has been con-
firmed [416, 417, 419] by direct numerical solution of
Egs. (16.70). Severa typical trajectories for the cross
LASER PHYSICS Vol. 11
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Fig. 42. Trajectories and velocities during the period of time 0 < t < 50 for atoms with the sameinitial conditionsasin Fig. 41, but
for the trap parametersR=1, L = 1, and A = 20, and for the gravity parameters 8, = 0.05, &, = 0, 8, = —0.05. Here: (a) trajectories;

(b) velocities.

section x(t) — z(t) and the related phase portraits for the
velocities x (t) and z(t) are presented in Figs. 41 to 42,
for the trap axis inclined by the 45 degrees to the hori-
zon. Theinfluence of gravity, asis seen, resultsin curv-
ing the trgjectories, similarly to what happens to can-
non shells. Stronger gravitational force bends the tra-
jectories stronger. But the semiconfining regime
remains.

To consider the role of random collisions, described
by the term y& in Eq. (16.54), one has, after substituting
the fast solution (16.57) into Eq. (16.54), to averagethe
right-hand side of the latter over time, as in the defini-
tion (16.59), but without averaging over the variable €.
The rotating transverse field (16.62), initial spin polar-
ization (16.64), trap shape factor (16.65), and al nota-
tions are assumed to be as before. Then, instead of
Egs. (16.70), one obtains

2
g—%( = luzx+6,(+——y——zéx,
dat> 2 A S’
, (16.80)
Az _ \2u2+s,+ YL g,
dt A Sw;

The random variables &, are characterized by the sto-
chastic averages (16.53), the second of which, for the
dimensionless time used in Eq. (16.80), writes

[TE4(1)&p(t)D = 2Da8upvASw;S(t ~t),
just because the time here is measured in units of

(VASw)™

If the main behavior of the system were governed by
intensive random collisions, then, as is evident, no
ordered semiconfining regime of motion could exist.
The disorganized chaotic motion of atoms is of no
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interest for the present investigation. What is important
is to find conditions under which random collisions
would not much disturb the semiconfinement of atoms.
Therefore the terms in Egs. (16.80), which are related
to random collisions, can be treated as weak perturba
tions. To this end, the solutions to Egs. (16.80) may be
presented as the sums

X=X+ Xy, Z=2,+72,, (16.81)

inwhich x; and z; arethe solutionsto Eq. (16.70), while
X, and z, are given by the linearized equations. The lat-
ter, for r| < 1, whenu(r) = 1, are

d“x 1

Et—z—z = é(zlxz +X,2) + ——¢&,,
7 ! (16.82)
—222 = 2\°zz, + 5 -
dt 1

Asearlier, the equation for the y-component is not writ-
ten down, since it has the same form as that for the
x-component. The solutionsto Egs. (16.82) can be pre-
sented as

t

MM=IQH—DL;f
0 1

&) + 3x:2:(0) |,
(16.83)

MU=IQW4%;&MDW,
0 1

where

sinh(gqt
Gq(t) E%, efs%zl, 2 =2\%z,.
[0}
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According to the properties of the random variables &,
one has

[Tkf0 = %0 = 0.

Calculating the mean-square deviations, one can treat
X, and z; as dow variables, keeping them as quasi-
invariants. Then one obtains

2 .
T y'D,t [smh(stt) _1}

(9P well 28t
2 2 4 .
D, x &, t Osinh(et
3/2y 3)(2 12)( ( Z)[COSh(EZt)

+
(A *wizie; (s —e5)0 &t

— cosh(g, )] - Z—Zsinh(szt)sinh(sxt)
0
+ cosh(g,t)cosh(e,t) =1
0

M0 =

y’D,t [si nh(2e,t) 1]
A9 ¥ wiell  2e:t '
These solutions show that the small parameter hereis

y’D
32 3

m (16.84)

<1, D=sup{D,.

Under the inequality (16.84), random collisions can be
considered as a weak perturbation not essentialy dis-
turbing the semiconfined motion of atoms. Taking, for
estimates, the collision rate asy ~ apa,/my, where p is
the density of atoms, and the diffusion rate as D ~
kgT/h, where T is temperature, one gets from
Eq. (16.84) the condition

kg Th pzas2 <

32 3

> (16.85)

Mo(AS)™ Wy
If one takes the parameters typical of experiments with
8Rb and #Na, that ism, ~ 10?%? g, a,~ 5 x 107" cm,
w, ~ 10° s, AS~ 1, and p ~ 10%-10" cm3, then the
condition (16.85) requires T < T, ~ 10°-101 K. Such
temperatures are essentially higher than the Bose-con-
densation temperatures for the corresponding atoms.
Hence, the Bose-condensed trapped atoms can be cou-
pled out of the trap in the regime of semiconfined
motion. This mechanism can be employed for creating
well-collimated beams from atom lasers in arbitrary
direction. Such highly-directional beams can beformed
by means of only magnetic fields. That is why the
described effect has been named the magnetic semicon-
finement of atoms [408, 415-419].
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CHAPTER 17.
BOSE-EINSTEIN CONDENSATE IN LIQUIDS

In the previous chapters, Bose-Einstein condensate
in trapped atomic gases has been considered. Similar
types of condensates can appear in other gaseswith suf-
ficiently weak interparticle interaction. For example,
Bose-Einstein condensation of excitons in CuCl and
Cu,0 has been studied both theoretically and experi-
mentally [421-423]. It has been predicted [288, 289]
that in dense nuclear matter the Bose condensation of
dibaryons can happen [424-426], which suggests the
possibility of creating dibaryon lasers [427].

As has been demonstrated by Bogolubov [282],
Bose-Einstein condensation does generally occur in
weakly nonideal Bose gases. But an important question
is whether the condensation remains in Bose liquids,
that isin the systems of strongly interacting atoms. The
most known and intensively studied such a liquid is
superfluid “He. Since London [428] and Tisza [429], it
is commonly believed that superfluidity in helium is
somehow connected to Bose condensation, although an
explicit relation between the superfluid and condensate
fraction is yet unknown till nowadays. In this Chapter,
we shall briefly touch some problems in the theoretical
description of strongly interacting systemsand will dis-
cuss the most accurate experiments aiming at measur-
ing the condensate fraction in superfluid helium. It is
not our goal to give here a detailed review of these top-
ics which voluminous literature is devoted to, but we
shall sketch only some, to our mind, most interesting
points, paying attention to differences and similarities
in the features of liquids and gases.

17.1. Differences between Liquids and Gases

There are several important differences that are
immediately noticeable when comparing liquids with
gases. For concreteness, liquid “He at saturated vapor
pressure will be considered in what follows. With the
density p = 0.0218 A-3, the mean interatomic distance
isa = 3.58 A. The superfluid transition temperature is
T, = 2.17 K. For this temperature and mass m, = 6.64 x

102 g, the thermal wavelength isA+ = 5.93 A.

Here, one may notice the first difference, making it
clear that at T, theratio a/ Ay = 0.6 isnhot much less than
one, so that inequality (7.1) is not valid. Respectively,

p)\f =4.6. This, however, does not ook yet too danger-

ous, since by lowering temperature, one always can
reach the point when A+ > a.

The more warning sign isthat inequality (7.2) never
holds true. To make this transparent, one needs to
define the interaction radius. For an interaction poten-
tial d(r), with a hard core of radius o, the interaction
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radiusis defined as

IrCD(r)rzdr
=0+

ICD(r)rzdr

(17.1)

In the case of soft-core potentials, one can put g — 0.
But the interaction for helium atoms is usually
described by hard-core potentials.

The most popular is the Lennard-Jones potential
12 6.

-3 } (17.2)

o(r) = 45[

in which
€ = 10.22K, o = 2556 A.

Here, € is given in the Kelvin scale. The minimum of
this potential, given by the expression

r, = 2"c = 287A, ®(r,) = —¢,

is located at the point that is smaller than the inter-
atomic distance a. There exist also several other poten-
tials [430]. One of the best representations of the
helium interaction is produced by the Aziz potential
[431-433] having the form

o(r) = S[Ae ax=px —F(x)q(6+—+—q]}, (17.3)

in which
] _[é_ D2
F(x) = Eex'o[ Ck ID}’ X<0
%1, X=0

and the dimensionless variable
L, o) = -¢,
rm

defines the radius normalized to the point of minimum
rm, SO that
€ =1094K, r,=297A.

The other parameters, according to the last version
[433], are

X

A=1922x10°, a = 10.735, P = 1.893,
5 = 1414, c, = 1.349, c, = 0.414,
Cyp = 0.171.

Cadlculating the interaction radius (17.1) is more
convenient for the simpler Lennard-Jones potential
(17.2). This gives r;,, = 2.690 = 6.88 A. Comparing it
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with the interatomic distance, one hasr;./a = 1.9, from

where prisnt =7.1. Hence, Eq. (7.2) isnot valid, aswell
as the second of Egs. (7.3), since

pri. > 1. (17.4)

Therefore, the condensate in aliquid, where Eq. (17.4)
holds true, should be rather depleted, if condensation
can occur at all.

The third peculiarity results from the fact that ine-
quality (17.4) contradicts Egs. (9.2), because of which
one cannot simplify the consideration resorting to the
cartoon potential (9.3), but one is doomed to operate
with the full potentials like those above.

One more problem immediately arises from the pre-
vious, due to the sad circumstance that the hard-core
potentials, asthe Lennard-Jones one, are not integrabl e,
i.e., they do not satisfy condition (7.30). Because of
this, itisimpossibleto break gauge symmetry by means
of the Bogolubov prescription, as is discussed in Sec-
tion 7.4. Nontrivial coherent states also do not exist for
nonintegrable potentials, as is explained in Chapter 8.
Thus, atoms cannot be in pure coherent states, but can
be only partially coherent. To cope with the nonintegra-
bility of theinteraction potentials, one hasto accurately
take into account interatomic correlations, especially
short-range ones. For this purpose, without breaking
gauge symmetry, one employs [434-437] the Jastrow-
type variational functions

W(ryra )

175

) I_l fry) I_l Fa(rijs Mo Tii) (175)
i<j i<j<k

inwhichr;; = |r; —r;|; f(-) isapair correlation function,
and f4(-) isatriplet correlation function. The pair corre-
|ation function behaves, at short distance, as

0 170
f(nnUexp+===0 (r— 0), (17.6)
0 200

and at large distance, it has the asymptotic behavior
.mc ml

[bz DZ

where cisthe velocity of sound. Exponentially tending
to zero as r — 0O, the correlation function (17.6)
smooths the divergence of the interaction potential
making the smoothed potential

D(r) = f(r)d(r) (17.8)

integrable. Note that, although the Aziz potential (17.3)
isformally finite at r = 0, its value ®(0) ~ 10° K is s0
large that this potential is also to be considered as a
hard-core potential, necessarily needing to take into
account interatomic correlations smoothing its sharp

f(ry=1- (r — o), (17.7)
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rise at r = 0. The smoothing radius b in Eq. (17.6) can
be treated as a variational parameter or can be deter-
mined from the Schrédinger equation for a pair wave
function [438—440], from where

= EB_/\D (O (179)
here the DeBoer parameter
A=—1 (17.10)

o /mokBe'

For helium, A = 0.426 and b = 1.130 = 2.89 A. Corre-
lation functions can also be found by invoking a cumu-
lent-type expansion in the frame of the method of col-
lective variables [441-443]. These functions can be
optimized by solving the Euler-Lagrange equations
[434-436]. The large-distance behavior of the correla-
tionfunction (17.7) isaconsequence of the existence of
long-wavelength phonons [444]. After the smoothed
potential (17.8) is defined, it is possible to develop a
systematic iterative procedure for Green function equa-
tions[291, 355].

The necessity of taking account of strong inter-
atomic correlations at the very first step of any iterative
procedure is dictated by two reasons. One, as is
explained above, is the nonintegrability of the hard-
core interaction potentials, because of which the Fou-
rier transforms of such potentials do not exist. Another
reason is that the application of simple perturbation
theory, without an appropriate account of correlations,
can lead to senselessresults. Asan example, we may try
to calculate, by using perturbation theory [445], the
density of Bose-condensed atoms at zero temperature,
which yields

1 ~ 32
Po = P——=[pmy®(0)] ,
° 3thS

where ® (K) is the Fourier transform of the interaction
potential. Asis said above, such a transform does not
exist for nonintegrable potentials. But even assuming a

soft-core potential, one has P (0) = kg&/p, which for
helium results in po/p = —0.16, that is a physically
senseless negative value for the condensate density.

The impossibility of applying simple perturbation
theory to liquids can be easily understood remembering
that for this theory to be applicable requires the small-
ness of the ratio of the mean potential energy to the
mean Kkinetic energy. However, for liquids, thisratio is
never small, but, on the contrary, it isusually larger than
one. For helium, as follows from theoretical calcula-
tions [443, 446, 447] and experiments [448-451], this
ratio is about two.

COURTEILLE et al.

17.2. Definition of Superfluid Density

One commonly believes that superfluidity appears
simultaneously with Bose condensation, athough the
relation between the superfluid and condensate frac-
tions has never been established for liquids. Thus, at
zero temperature, al volume of helium is superfluid,
while the condensate fraction does not exceed a value
of about 10%, and no genera relation between these
fractionsis known.

The condensate density is defined as the difference

(17.12)

~

Po=P—P

between the total density p and the density of noncon-
densed atoms,

1
(2m
in which n(k) is the momentum distribution.

The superfluid density can be determined by analyz-
ing the response of the fluid to the motion imposed by
boundary conditions [445, 452, 453]. For this purpose,
one needs to study what happens when the system is
subject to an external perturbation, such that the liquid
starts moving uniformly with velocity v. This motion
could be achieved by pushing the liquid through atube
having apressure difference at its ends or enclosing the
system between two rotating cylinders of radii much
larger than the distance between cylinder walls.

For a system uniformly moving with velocity v, the
field operator in the laboratory frame, Y, is connected
with thefield operator ) in the frame, where the system
isimmovable, through the Galilean transformation

p= 3In(k)dk, nk)=@al (17.12)

W.(r) = w(repHtv ] (17.13)

Then the operators of observables in the laboratory
frame are obtained by taking W, instead of . For
instance, the Hamiltonian (8.13) becomes

H, = H +IwT(r)S/Eﬁ+%mov%qJ(r)dr, (17.14)

where p = —i#2V. The number-of-atoms operator does
not change,

N, = N = J'L|JT(r)qJ(r)dr. (17.15)
And the momentum operator

P=[w(npy(r)dr
transforms to
P, = P+myNv. (17.16)
LASER PHYSICS Vol. 11 No. 6 2001
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Observable quantities from the algebra of observables
s are given by the average

A0, =Trp, A, (17.17)
with the statistical operator

" Trexp{—B(H, —uN)} '

where 3 = (kgT)™. For the momentum operator (17.16),
one gets

P,00, = PO, + myNv. (17.19)

The part of the liquid, which nontrivially responds
to the perturbative motion, defines the superfluid com-
ponent with the density

A Q
P.O.

oM = (17.20)

Here, it istaken into account that, for aninitially isotro-
pic system, the density (17.20) should not depend on
the direction of the probing velocity, that is, ps does not
depend on the index a.

To calculate the superfluid density (17.20), one has
to analyzethelimitv — 0. Inthislimit, linearizing the
statistical operator (17.18), one finds

p, = p[1+pv I PO-P)], (17.21)
which for the average (17.17) yields
M0, = MO+ v O POHO- (PAD).  (17.22)

Here, L4 0= Tr pd implies an average in the frame at
rest.

For an isotropic system, one has
PO = ﬁz kn(k) = 0. (17.23)
k

Because of this, the statistical operator (17.21) sim-
plifiesas

P, = p(L—Pv [P) (17.24)
and the average (17.22) reducesto
M0, = MO-Bv OPAO (17.25)
For example,
[P0, = —B{v P)PO (17.26)

Using this, for the average (17.19) one obtains
[P,[}, = myNv —B (v [P)PO (17.27)

In the case of an isotropic system, one can employ the
equality

AQAp A0, 2 1 2
TP PO =84, (P") D= 3805 P T
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which gives
9
v,

Finally, the superfluid density (17.20) takes the form

Py, = mON—gEISZD

_~__PB 52
Ps = P~ 3N P (17.28)
Since one also has the relation
ps = p_pm (1729)

where p,, is the density of the normal component, the
comparison of Egs. (17.28) and (17.29) yields

_ _PB ¢
P = 3m0NEPZD

This tells that the normal component is related to the
dissipated energy of motion, while the superfluid com-
ponent corresponds to nondissipative motion.

(17.30)

The dissipative term [P’ Ocan be written in several
forms. It can be expressed through the momentum-
momentum correlation function as

P = [B(r)p(r)rar,
where the momentum-density operator is

p(r)=w' (N =HAV)W(r).

It can aso be connected with the two-particle Green
function

G,(1234) =T w(VWW' )W (41

in which T is the time-ordering operator and y(j) =
g(rj, t;). One has

(17.31)

BT = ﬁZJ'ISilrg(Vl [V,)G,(1234)dr,dr,, (17.32)

where the limit means

[im= lim lim lim

3142 rg - ryry - rot -t

under the condition t; > t; > t, > t,. Passing to the
momentum representation by means of the Fourier
transform

o

1 ik
w(r) = f/gake :

one gets

PT= ﬁzz (k IK') By a,a) a0 (17.33)
kk'

To find explicit expressions for the condensate den-
sity (17.11) and the superfluid density (17.28), one
needs to specify the problem. It is straightforward to
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show how to accomplish calculations for the ideal gas
with the Hamiltonian

H = z (ﬁwk—ll)a;aka

k

(17.34)

where w, is a particle spectrum and |, the chemical
potential. Then one has

O an(k)
Bh 0w, ’
which can be directly checked by differentiating

on(k)/0wy, . Assuming the thermodynamic limit with the
standard replacement

@laalad= n(kn(k) -

Vv
Z T en’

and using condition (17.23), one finds

dk,

= -V ey, (17.35)
(2m) 00
Hence, the normal density (17.30) becomes
h 20n(k)
= - k dk. (17.36)
3m0(2n)3j 0wy,

With theideal -gas Hamiltonian (17.34), the momentum
distribution is
n, = 1 (17.37)
“ 7 exp{B(hwy—p)} -1 '
Specifying the spectrum A, = %%k?/2my, one finds the
density (17.12) of noncondensed atoms,

om0
Ebhﬂ 4112O e e

and the density (17.36) of the normal component,

p =

3/2 x

_ 2™ xeldx
" Bnt et (e -y

The integrals here are related through the equality

p

00 00

xPefdx lim 2 x2dx
I X BHy2 _)\Iinlé-}:_l-e)‘x_eﬁpl
o(e —-€e7) 0
Below the condensation temperature, one has u = 0,

and the integrals simplify to the form

“xPldx 1
2oy .
-!e“—l P (P)2(pP)

COURTEILLE et al.

In thisway, one comesto the conclusion that below the
condensation temperature

= ke 5

the density of noncondensed atoms (17.12) and the nor-
mal density (17.30) coincide,

. T312
p=pn=pFT -

2/3

c

(17.38)

Conseguently, the condensate density (17.11) coincides
with the superfluid density (17.29).

Such acoincidenceisto betreated rather as an occa-
sion than as arule, since the general forms of the den-
sities (17.12) and (17.30) are very different. The coin-
cidence in Eq. (17.38) happened because of the partic-
ular case of an ideal gas with a parabolic spectrum. If,
with the same momentum distribution (17.37), the
spectrum y, is slightly changed, the coincidence of p
and p,, will not occur. As an illustration, one may take
the phonon spectrum w, = ck. Then the density of non-
condensed particles becomes

5 = QT

was sk (17.39)

The calculation of the normal density reduces to the
integral

® 2n x

IX e dx
X 2
(e —=1)

where B,, are the Bernoulli numbers. Equation (17.36)
resultsin

2n-1_2n

=27 1By,

_ 210(kgT)"
45meh’c®

Asis seen, expressions (17.39) and (17.40) are neither
coinciding with nor proportional to each other, but they
even have different temperature dependence.

For anonideal system, both the particle spectrum w,
and momentum distribution n(k) differ from those of
the ideal gas, as a result of which the condensate den-
sity pg is, in genera, very different from the superfluid
density ps. The momentum distribution for liquid
helium has little in common with that for an ideal gas.
Instead of n(k), one often considers the combination
k’n(k). The latter, for an idea gas below T, has the
maximum 2mykg T/A2 at k= 0. But for liquid helium, the
function kn(k) is zero at k = 0 and possesses a maxi-
mum at k = 0.7 A, asfollows from theoretical calcula-
tions [434-436, 446, 447] and experiments [454-458].
In this way, there is no genera relation between the
condensate and superfluid densities. The coincidence
of these for the ideal gas with a parabolic spectrum is

(17.40)

n
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rather occasional. Moreover, this coincidence is even
confusing, since the Landau criterion of superfluidity
minw >0
k k
cannot be satisfied for a parabolic spectrum. Hence, the
ideal gas should not possess the property of superfluid-
ity at all.

17.3. Spectrum of Collective Excitations

The most convenient technique for the theoretical
description of collective excitationsin quantum liquids
is the method of Green functions. The spectrum of col-
lective excitations is defined by the poles of the two-
particle Green function or by the poles of the density
response function x(k, w). Thisis equivalent to saying
that the collective spectrum g(K) is defined by the zeros
of theinverted response function x(k, w), that isby the
equation

X (k, €(K)) = 0. (17.41)

This method of describing collective excitations can
also be employed for nonuniform systems, such as
gases of trapped atoms. Therefore, it isworth mention-
ing here some relevant points of this approach to Bose
systems.

The calculation of the density response function for
strongly interacting Bose liquids, such as helium, is a
very nontrivial task [459]. Actually, there exist no reli-
able theoretical methods of treating strongly interacting
guantum liquids, being based on microscopic theories.
Because of this, the consideration here will be limited
by weakly nonideal systems, for which the so-called
random-phase approximation isvalid. This approxima-
tion corresponds to the usage of the Hartree form for
self-energy. To be more accurate, one hasto employ the
correlated Hartree approximation [291, 355] taking
account of interatomic correlations, asaresult of which
the bare interaction potential is replaced by the
smoothed potential (17.8). Thisis especially important
for atoms interacting through nonintegrable potentials
for which the Hartree self-energy diverges because of
the divergence of the Fourier transform of the interac-
tion potential, while the Fourier transform

—ik [T

d(k) = I(TJ(r)e dr (17.42)

of the smoothed potential (17.8) perfectly exists.

Considering collective excitations for the same sys-
tem, it is very instructive to compare the spectrum
obtained under different assumptions, in order to
understand what would be the difference between the
collective spectra for the cases: (i) when the system is
in a coherent state and when it is incoherent, and
(ii) when gauge symmetry is broken and when it is con-
served. As follows from Chapter 13, collective excita-
tions for a weakly nonideal Bose system in a coherent
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state possess the same spectrum as that for a system
with broken symmetry [282, 300, 445].

For an incoherent system, with conserved gauge
symmetry, the single-particle spectrum in the corre-
lated Hartree approximation is

k2

(k) = 5+ p®(0) — 1. (17.43)

Here and in what follows, the system of unitsis used
where# = 1. Recall that the single-particle spectrum is
given by the poles of the single-particle Green function.
These poles, when gauge symmetry is conserved, are
different from those of the two-particle Green function,
giving the spectrum of collective excitations. This is
contrary to the case of broken gauge symmetry when
the single-particle and collective spectra coincide [282,
445]. The single-particle Green function for aBose sys-
tem with conserved gauge symmetry has the form

1+n(k) n(k)
w—wk)+i0 w—w(k)—i0’
in which the single-particle spectrum w(K) is defined in
Eq. (17.43), for the approximation considered, and
n(k) = [exp{ Bk} =17

is the momentum distribution. In this case, the density
response function becomes

Mk, w)

G(k w) =

XD = T Tk o)’ (74
with the polarization function
Mk, w)
'S n(k)dk’ (17.45)

" en® (w—k [K'my)? = (K¥2my)°

The equation (17.41) for the spectrum of collective
excitations can be written as

1-T(k, £(k))®(k) = 0. (17.46)

The polarization function (17.45) can be simplified
noticing that the momentum distribution n(k) quickly
diminishesask increases. Then one can put k' =0inthe
denominator of Eq. (17.45), which yields

pk2/m0
w? = (K¥2mp)”

Substituting thisin Eq. (17.46) resultsin the Bogolubov
spectrum

2 2
e5(k) = ch(k)kﬂ%ﬁ,

Mk, o) = (17.47)

(17.48)
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Fig. 43. Spectrum of collective excitationsin superfluid “He
at saturated-vapor pressure and low temperature. The

energy £(K) is measured in K and the wave vector k in AL,

= [P g
(k) = /mocp(k).

If one assumes here the delta-potentia, asin Eq. (9.3),
one gets the same Bogolubov spectrum (13.8) as for a
coherent system. The same collective spectrum (17.48)
follows for a system with broken gauge symmetry
[282, 300, 445].

The approach, based on density response functions,
can also be applied to amixture of Bose liquids defined
by the Hamiltonian (14.1). It is straightforward to dem-
onstrate [395] that the spectrum of collective excita-
tions branches, and, for amixture with conserved gauge
symmetry, acquires the same form (14.27) as for a
coherent mixture of Section 14.2 or for a mixture with
broken gauge symmetry [393]. The condition of
dynamical stability for abinary mixtureis

in which

(17.49)

‘3911(0) &922(0) > &Diz(O). (17.50)
For the case of the delta-potentias (14.11), one has to

replace o) i (K) by A, which reducestheinequality (17.50)
to condition (14.34).

Moreover, considering the mixture with relative
motion of components, it is possible to show that the
spectra of collective excitations and, respectively, the
conditions of dynamic stability are the same for a
coherent mixture discussed in Section 14.4, for a mix-
ture with broken gauge symmetry [393], as well as for
a norma mixture with conserved gauge symmetry
[395]. Thus, the spectrum of collective excitations does
not depend on whether the system is coherent or nor-
mal, whether gauge symmetry is broken or conserved.

For superfluid “He, the first spectrum of collective
excitations was proposed by Landau [460, 461] in the
course of analyzing thermodynamic properties. Feyn-
man [462] suggested a microscopic basis for the Lan-
dau’s phenomenological dispersion curve, connecting

COURTEILLE et al.

the excitations spectrum with the static structure factor
S(Kk), which resulted in the spectrum

K°/2
e-(K) = S(kr)%.

Neither Landau nor Feynman mentioned the broken
gauge symmetry. Bogolubov [282, 463], deriving the
excitation spectrum, introduced gauge symmetry
breaking. But, as is demonstrated above, the same
Bogolubov spectrum can be derived without breaking
gauge symmetry. All of them, Landau, Feynman and
Bogolubov, considered the phonon—roton curve of
excitations in helium as a unified branch, so that it is
impossibleto speak strictly of phonons and rotons as of
different types of elementary excitations. But it is more
correct to speak of the phonon and roton parts of the
same unigue spectrum. Note that the Bogolubov spec-
trum (17.48) can reproduce the phonon—roton spectrum
of liquid helium for an appropriate interaction potential
defining the effective sound velacity (17.49). This spec-
trum isreproduced under simple conditions on the Fou-

rier transform & (K):

®(0) >0, min&J(k) = d(k,) <0,

lim ®(k) = 0,

where k. corresponds to the point of roton minimum.
Such conditions are easy to achieve even for rather sim-
ple potentials [464].

The difficulty of calculating the spectrum of collec-
tive excitations for the realistic strongly interacting
liquids, such as helium, prompted some authors to con-
struct phenomenological or semiphenomenological
models. We shall not give here a complete survey of
these models but will mention only one of them, which
recently provoked avivid discussion. Thisisthe model
advanced by Glyde and Griffin [465-468]. The basic
assumption of thismodel is that there are in superfluid
“He two principally different branches of excitations:
one is the phonon branch due to density excitations at
low wave vectors, and another part is the quadratic sin-
gle-particle branch at higher wave vectors. These two
branches exist independently of each other, so that they
remain above as well as below the temperature of
superfluid transition T,. But below T,, these branches
become coupled via the appeared Bose condensate
accompanied by broken gauge symmetry. However, the
existence of two separate branches apparently contra-
dicts the unified picture of Landau, Feynman, and
Bogolubov. By exact microscopic consideration,
Nepomnyashchy [469] showed that model propagators,
employed in the discussed model [465-468], are not
consistent with the general structure of Green function
equations, while the latter support the unified nature of
the phonon—roton spectrum. The temperature depen-
dence of the excitation spectrum was studied experi-
mentally [470, 471]. These experiments demonstrated
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that there is no indication of awell-defined single-par-
ticle branch, becoming the roton mode, that would sud-
denly appear asone goesbelow T, . Contrary to this, the
superfluid transition is marked by a compl ete softening
of the roton mode and its rapid attenuation, when one
approaches T, from below. Above T,, the roton mode
continues to an overdamped diffusive mode of zero fre-
guency. In this way, experiments [470, 471], asis con-
cluded by their authors, imply “a qualitative disagree-
ment with the interpretation proposed by Glyde and
Griffin.”

Thus, the phonon—oton spectrum of superfluid
helium must be considered as a unified branch. The
guestion remains whether there could exist some rem-
nants of low-frequency quasiparticle excitations in
addition to the phonon—roton branch, with the energies
below the broad multiphonon component. There have
been some theoretical arguments [395, 472-475] con-
cerning the possible existence of an additional quasi-
particle excitation branch. In a series of papers
[476-480], the authors find experimental indications
that an excitation branch, additional to the phonon—
roton spectrum, could exist. However, the latter exper-
iments have not yet been confirmed by other groups. It
isworth emphasizing that, even if some additional exci-
tation branch does exist, one has, first of all, to under-
stand its physical origin and, second, no interpretation
should contradict the fact that the phonon—roton curve
isaunified branch [469-471].

The phonon—roton spectrum of superfluid “He has
been carefully studied in many experiments (seereview
[481]). Its commonly accepted form, at saturated-vapor
pressure and low temperature T< 1.2 K, ispresented in
Fig. 43. In the long-wave limit, one has the phonon
spectrum

e(K) = cok, ¢y, = 2.38x% 10* cn/s.,

In the vicinity of the roton minimum, the dispersion
curveis

(k=K )
(k) =A, + ——— Zm
with A, = 8.6 K, k. = 1.9 A1, m = 0.16m,. But let us
stress it again that the phonon and roton parts of the
spectrum are the pieces of a unified branch.

The phonon—oton spectrum terminates at around
k= 3.5 AL, becoming unstable with respect to the
decay of excitations into several other excitations with
lower energies [482—485].

17.4. Dynamic Structure Factor

The spectrum of collective excitations can be exper-
imentally measured by means of neutron scattering
LASER PHYSICS Vol. 11
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described by the double differential cross section
d’o _ 2kf
3000 - S(k w), (17.52)

where b is the scattering length of a neutron on a
helium atom, k, and k; are the initial and final wavevec-
tors of the scattering neutron, and k and w are the
momentum and energy transfer from the neutron to the
sample. The dynamics of theliquid are contained in the
dynamic structure factor

Sk, w)

_ i i(k O —t) (17.52)
—anIR(rIOO) p]e drdt,
inwhich
R(r,t,r',t") = [p(r, t)p(r', tHd (17.53)

is the density-density correlation function, with the
density operator

B, =w'(r, DW(r, 1),
Using the Fourier integral
R(r,t,r',t"

|k[(r r)—iw(t— t)dkdoo

(H)

one gets

1
Sk @) = 57 Rk ) - (219°p"3(K)3()] . (1754)
Employing the properties of Green functions[291], one

can find

2Imx(k oo)

R(k, w) = +(210)*p*3(K)5( w). (17.55)

Then for the dynamic structure factor (17.54) one has
Imyx(k, w

Sk, ) = — Xl @)

np(l+e™)

Theresponse function x(k, w), on the complex w-plane,
possesses the spectral representation

(17.56)

x(k, @) = ZnIK(k KK @) ey, (17.57)
in which the spectral function
K(k, ) = i[x(k,w+i0)—x(k,w—i0)]. (17.58)

From the properties of Green functions[291] it follows
that

Imx(k, w) = —%K(k, w)coth B4 (17559

2 [
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Hence, Eq. (17.56) can be written as
K (K, w)
2mp(1l-e")

The latter, with the notation for the Bose function

Sk, w) = (17.60)

1

b(w) =(e"'~1)",
takes the form

1+ b(w)

S(k, @) = 5Kk, ). (17.61)

The dynamic structure factor satisfies the following
sum rules

+00

J'S(k, w)dw = k), (17.62)
which defines the static structure factor SK),
I wS(k, w)dw = E,, (17.63)
which gives the kinetic energy
k2
E = 2y (17.64)
and
Is(—k’ ©)ggy = ~REX(K0). (17.65)
w 2p

—00

The relation of the dynamic structure factor to the
density-density correlation function and to the density
response function means that these are the density fluc-
tuations which contribute to S(k, w). In their turn, the
density fluctuations define the spectrum of collective
excitations, because of which the dynamic structure
factor is directly related to the latter. This relation can
be clearly illustrated using the random-phase approxi-
mation for the density response function (17.44) and
the form (17.47) for the polarization function, which
yields

2pE,
W —¢ (k)

where g(k) = €g(K) is the spectrum of collective excita-
tions in the Bogolubov approximation (17.48). With
Eq. (17.66), the spectral function (17.58) becomes

x(K, 0) = (17.66)

2T pE,
e(k)

K(k w) = [0(w— gk)) —d(w+ gk))].(17.67)

COURTEILLE et al.

Then the dynamic structure factor (17.61) is
Sk, w)
(17.68)
(k)[é(w g(k)) —o(w+ gKk))].
For the static structure factor (17.62) one gets
S(K) = coth PEK) Bs(k)

(k)

The sum rule (17.63) is |dent|caJIy valid, and from
Eq. (17.65) one has

Sk, @) 4y = —ZEK .
W £2(K)

= [1+b(w)]

(17.69)

(17.70)

in agreement with the form (17.66).

Expression (17.68) shows that the dynamic struc-
ture factor has a sharp peak at the frequency w coincid-
ing with the spectrum of collective excitationse(k). The
delta-function shape of thispeak istheresult of thesim-
plicity of the approximation used. In redlity, the
observed peaks are, of course, finite and can befitted to
the measured data by means of the Lorentzian or Gaus-
sian forms.

17.5. Measurement of Condensate Fraction

The dynamic structure factor, as is shown above,
gives information on the spectrum of collective excita-
tionsin liquid helium. Hohenberg and Platzman [486]
suggested that thisfactor can also be used for extracting
the value of the condensate fraction

(17.72)

For this purpose, one has to invoke deep-inelastic neu-
tron scattering with very high transferred momenta k,
such that the scattering could be treated as occurring on
single atoms and the scattering atoms could be assumed
to bein afree particle state. Thisimpliesthat the recail
energy k?2m, must be much larger than the mean
potential energy E, of an atom,

k> /2mEp. (17.72)

For superfluid helium, with my = 6.64 x 10 g, this
givesk > 10 AL, that is one should have k = 100 AL,
Then, for the dynamic structure factor, the impulse
approximation isvalid yielding

Sk, @) = jmmaw Emp+E%;ﬂ

(7.73)
where E, is defined in Eq. (17.64). Substituting the
momentum distribution

n(k) = (210)°nep3(K) + A(K) (17.74)
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in the impul se approximation (17.73), one has
Salk @) = Sk w) + S(k, w),
with the terms
So(k, ) = ned(w—Ey),

(17.75)

1.~ d
Sk @) = S[A(P)3(w-Eycep + Ep) L,

Y (2m)
Hence, the existence of condensate should result in the
appearance of a sharp peak in §(k, w) above the broad
distribution due to S, (k, w).

For the deep-inelastic scattering, it is convenient to

use the West [487] scaling variable

= %’(m— ) (17.76)

and to define the so-called Compton profile

J(k, Y) = LS(k, w), (a7.77)
Mg

whose name comes from the initial usage of such vari-

ables in electron scattering. The convenience of using

the profile (17.77) is due to the fact that at high

momentait tendsto avalue

JOY) = Ik Y) (K— o), (17.78)

which does not depend on k. Thus, for the impulse
approximation (17.73), one gets

00

1
dp. (17.79
2n)zpjy’lon(lo) p. ( )

Inverting the latter equation gives the momentum dis-
tribution

3,a(Y) smﬁosA(k, w) =

n(k) = (219’22 3,,(K).

If this distribution would have the form (17.74), one
could directly measure the condensate fraction n,.

However, there exist severa principal difficulties
prohibiting the extraction of the momentum distribu-
tion from the observed scattering. First, any experimen-
tal observation is affected by the statistical uncertainty
of the measurements. These uncertainties will trandlate
into uncertaintiesin theinferred n(k). The most striking
feature of the inferred momentum distribution is the
increase in the statistical noise near k = 0, due to the
division by kin Eqg. (17.80). Even very large differences
in n(k) at small k only cause small changes in the
Compton profile J(Y). Thus, the statistical noise present
in J(Y) allows awhole family of n(k) that are consistent
with the observed data[458]. The predicted small k sin-
gular behavior makes little contribution to the observed
scattering, and with the experimental techniques now
available, will bedifficult, if not impossible, to observe.
Dueto thefinite statistical errorsinherent in any exper-

(17.80)
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iment, the experimental results can not definitely prove
the existence of a condensate, which formally corre-
spondsto ad-function. Some other singular, or even not
singular, behavior, but not a condensate, could be
responsible for the increase in the scattering at small k
observed in the superfluid [458]. Hence, the experi-
mental results can not rule out a ground state which
does not contain a condensate or which corresponds to
something like a smeared condensate [489]. The mea-
sured scattering is consistent with many different forms
for n(k), including modelsthat do not include a conden-
sate at al [454, 490].

Another weak point in the attempts to measure the
condensate fraction in superfluid helium is the usage of
the impulse approximation (17.73), which assumes that
helium atoms behave as free particles. The latter
requiresthat the transferred momenta satisfy inequality
(17.72), being about 100 AL for liquid helium. How-
ever, the mgjority of neutron-scattering experiments
have been performed at momentum transfers not higher
than 23 A-L. Some experiments [491] used the trans-
ferred momentaas high as 150 AL, but the accuracy of
these measurementswas so low that it did not allow one
to decide anything about the value of n,,.

The fact that helium atoms inside a liquid are not
free but strongly interact with their surrounding leadsto
what one calls the final-state effects [492—494] and the
initial-state effects [495-497]. The former can be taken
into account by defining a convolution

+00

IV = [FRY=Y)I(Y)dY (17.81)

of the impulse-approximation result with a final-state
broadening F(Y) that is to be calculated from a micro-
scopic model [492, 493]. Taking account of the initial-
state effects requires to change the definition of the
scattering variable (17.76) itself [498].

One more problem which isto be taken into account
is that what one actually measures is not the profile
(17.81), but the effects of instrumental resolution must
be involved in order to determine the true scattering. In
general, the instrumental broadening is a complicated
function depending on the energy and momentum
transfer and the instrument geometry, and a simple
closed-form expression for the resolution function is
not possible. In the case of helium, an effective resolu-
tion function 1(Y) can be calculated by a Monte Carlo
simulation of the spectrometer. In terms of this instru-
mental resolution function, the observed broadened
Compton profile is given by the convolution

Jos(Y) = II(Y—Y')J(Y')dY', (17.82)
where J(Y) is defined by Eqg. (17.81).

In interpreting experimental scattering data, one
usually doesthe following [449, 499, 500]. Rather than
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attempt to deconvolute the instrumental resolution and
the final -state broadening, one assumes a model profile
Jmoa(Y), Which is substituted in Eq. (17.81) instead of
the profile (17.79). After this, one fits the convolutions
with J.4(Y) to the observed scattering profile Jq,.(Y).
The most often employed model profile [499, 500] isa
sum of Gaussians

0 (Y=Y,)D
[r( 20)D
20, 0O

A
Jmoa(Y) = /\/ZTT[O-exp

LA expm (Y—\ZO)ZD,
«/ﬁo-z O

20, 0O

whose amplitudes, widths, and common center may be
varied. This form is, certainly, not unique, and many
other forms could be used to fit the data. These two
Gaussians model the two terms in the dynamic struc-
ture factor (17.75). The term that is narrower is
assumed to model the condensate peak Sy(k, w), while
the wider Gaussian is supposed to model S,(k, w). Thus
for superfluid heliumat T=0.35K, onefinds[500] o, =
0.95 A and 0, = 0.29 AL, so that the latter width
should be related to the condensate. But it is worth
noting that even for normal helium the observed scat-
tering is not well characterized by a single Gaussian,
and a sum of two Gaussians much better describes the
observed scattering. For example, for normal helium at
T=35K, onehas[500] o; =1 A< and 0, = 0.45 AL
Therefore, the two-Gaussian model may show not the
appearance of condensate but just non-Gaussian behav-
ior of the momentum distribution [499, 500].

In this way, the origina goal for much of the work
with liquid helium, a direct observation of the conden-
sate fraction, has not come to pass. In view of the cur-
rent understanding of the final-state effects in helium, it
is unlikely that this goal will ever be reached in deep
inelastic neutron scattering experiments [449, 458, 500].
While the current experimental results do not definitely
prove the existence of a condensate, they do provide
indirect evidence for its existence, which agrees with
many theoretical calculations predicting n, = 10% at
zero temperature.

Several other ways have been suggested for indi-
rectly extracting information on the value of the con-
densate fraction; the interpretation of such methods
being based on model assumptions. Sears [448] tried to
determine n, by assuming arelation between the value
of the mean kinetic energy

(17.83)

dk
(2m)°

aT=T, and that value at T < T,. The mean kinetic
energy could be determined by using the impulse

k2
(E0= J'ﬁn(k)
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approximation for the dynamic structure factor,

+oo

(EO= lim 43_I15Tk [ (@-E*Sa(k 0)do. (17.89)

k - o

Campbell [501] suggested to consider a relation
between the condensate fraction and the surface tension
of superfluid helium. Wyatt [502] studied quantum
evaporation from the free surface of liquid “He. The
mentioned ways of determining the condensate frac-
tion, being based on several model assumptions, pro-
vide the upper limit for n,.

An interesting proposal was made by Cummings,
Hyland, and Rowlands [503-505] who advanced the
relation

p’[a(r) —1] = p2lga(r)-1], (17.85)

assumed to be valid for r = 4.5 A1 and connecting the
pair correlation function

g(Ir —r')

s;}l—zuu*(r)w*(r')w(r')w(r)u (17.80)
measured at T < T,, with the pair correlation function
0,(r) identified as the function either just above T, or
that function extrapolated to the temperature under
consideration. The pair correlation function (17.86)
and the density-density correlation function (17.53) are
connected as

R(r,t,r',t') = pg(Ir —r') +p3(r —r').
From Egs. (17.54) and (17.62), it follows that

g(r) = 1+(2i)3pJ‘[S(k)—l]eidek. (17.88)

Therefore, the pair correlation function can be calcu-
lated by using Eq. (17.88) with the measured static
structure factor Sk). Then, by substituting p,, = p — po
into the relation (17.85), one has

N =1- [g_g n((rr)) —__11 ] "

Thismethod of calculating the condensate fraction was
employed together with the datafor the pair correlation
function obtained through neutron scattering [506, 507]
and X-ray scattering techniques [508, 509]. The values
of n,, found by applying Eq. (17.89), arein good agree-
ment with those obtained by other methods. However,
the derivation of the relation (17.85) was criticized by
several authors [313, 510-512]. The main argument
against thisrelation is that the latter does not appropri-
ately takeinto account the anomalous averagesexistingin
asystem with broken gauge symmetry. But if gauge sym-
metry is conserved, the relation (17.85) can be approxi-
mately valid [279] intheregion4 At <r <12 AL,

(17.87)

(17.89)
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An accurate analysis of different experimental
methods of measuring n, was done by Wirth and Hal-
lock [509]. They fitted each of the sets of experimental
datato the function

ny(T) = nO(O)[ _%TIH] (17.90)

While there is little theoretical justification for the use
of this form for liquid helium, it provides a uniform
methodology for obtaining values ny(0). Summarizing
the results of various experiments, one has ny(0) = 0.10
and5<a <10.

CONCLUDING REMARKS

Bose-Einstein condensation of trapped atoms is
now avery vast and quickly developing branch of phys-
ics. Becauseit is so vast, it isimpossible to touch, on a
reasonable level of explanation, all related directionsin
one review. This especially concerns theoretical
aspects. Therefore, we preferred to concentrate on the
principal points which the theory of nonuniform Bose
systems is based on. We have tried to clearly elucidate
these main points. The choice of the most important
problemsis, of course, subjective, and many interesting
questions concerning Bose atoms were left aside. The
theoretical description of the degenerate trapped Fermi
atoms[513, 514] has not been touched at all, aswell as
the description of trapped Bose—Fermi mixtures [515].

The mgjority of theoretica considerations here have
been based on the Gross—Pitagvskii equation. Temperature
effects were only dightly touched. This is because of
the following reasons. First of al, it was necessary to
concentrate on the principal features of Bose-Einstein
condensate at zero or low temperatures, and a detailed
discussion of its thermal properties would essentially
enlarge the review. Another reason is that there are not
yet enough reliable experiments on trapped atoms with
Bose-Einstein condensates at finite temperatures
which theory could be compared with. Thermal proper-
ties of trapped atoms are to be studied more accurately,
both theoretically as well as experimentally.
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